已知函數(shù)f(x)=logax(0<a<1)對下列命題:①若0<x<1,則f(x)>0②若x>1,則0<f(x)<1③若f(x1)>f(x2),則x1<x2④對任意正數(shù)x,y都有f(x?y)=f(x)+f(y)其中正確的有( �。�
A.4個B.3個C.2個D.1個
相關習題

科目:高中數(shù)學 來源: 題型:

8、已知函數(shù)f(x)=logax(0<a<1)對下列命題:①若0<x<1,則f(x)>0②若x>1,則0<f(x)<1③若f(x1)>f(x2),則x1<x2④對任意正數(shù)x,y都有f(x•y)=f(x)+f(y)其中正確的有( �。�

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知函數(shù)f(x)=logax(0<a<1)對下列命題:①若0<x<1,則f(x)>0②若x>1,則0<f(x)<1③若f(x1)>f(x2),則x1<x2④對任意正數(shù)x,y都有f(x•y)=f(x)+f(y)其中正確的有( �。�
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年四川省綿陽市江油一中高一(上)期中數(shù)學試卷(解析版) 題型:選擇題

已知函數(shù)f(x)=logax(0<a<1)對下列命題:①若0<x<1,則f(x)>0②若x>1,則0<f(x)<1③若f(x1)>f(x2),則x1<x2④對任意正數(shù)x,y都有f=f(x)+f(y)其中正確的有( )
A.4個
B.3個
C.2個
D.1個

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:單選題

已知函數(shù)f(x)=logax(0<a<1)對下列命題:①若0<x<1,則f(x)>0②若x>1,則0<f(x)<1③若f(x1)>f(x2),則x1<x2④對任意正數(shù)x,y都有f(x•y)=f(x)+f(y)其中正確的有


  1. A.
    4個
  2. B.
    3個
  3. C.
    2個
  4. D.
    1個

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省佛山市南海一中高一(上)期中數(shù)學試卷(解析版) 題型:填空題

已知函數(shù)f(x)=logax(0<a<1),對于下列命題:
①若x>1,則f(x)<0;
②若0<x<1,則f(x)>0;
③f(x1)>f(x2),則x1>x2;   
④f(xy)=f(x)+f(y).
其中正確的命題的序號是    (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年廣東省廣州市培英中學高一(上)期中數(shù)學試卷(解析版) 題型:填空題

已知函數(shù)f(x)=logax(0<a<1),對于下列命題:
①若x>1,則f(x)<0;
②若0<x<1,則f(x)>0;
③f(x1)>f(x2),則x1>x2;   
④f(xy)=f(x)+f(y).
其中正確的命題的序號是    (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:2012-2013學年廣東省深圳市高一(上)期中數(shù)學模擬試卷(解析版) 題型:填空題

已知函數(shù)f(x)=logax(0<a<1),對于下列命題:
①若x>1,則f(x)<0;
②若0<x<1,則f(x)>0;
③f(x1)>f(x2),則x1>x2;   
④f(xy)=f(x)+f(y).
其中正確的命題的序號是    (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年甘肅省嘉峪關一中高一(上)期中數(shù)學試卷(解析版) 題型:填空題

已知函數(shù)f(x)=logax(0<a<1),對于下列命題:
①若x>1,則f(x)<0;
②若0<x<1,則f(x)>0;
③f(x1)>f(x2),則x1>x2;   
④f(xy)=f(x)+f(y).
其中正確的命題的序號是    (寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

已知函數(shù)f(x)=logax(0<a<1),對于下列命題:
①若x>1,則f(x)<0;      
②若0<x<1,則f(x)>0;
③f(x1)>f(x2),則x1>x2;    
④f(xy)=f(x)+f(y).
其中正確的命題的序號是________(寫出所有正確命題的序號).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

下列命題:
①函數(shù)y=
x-1
x+1
的單調(diào)區(qū)間是(-∞,-1)∪(-1,+∞).
②函數(shù)f(x)=|x|•(|x|+|2-x|)-1有2個零點.
③已知函數(shù)f(x)=ex-mx+1的圖象為曲線C,若曲線C存在與直線y=
1
2
x垂直的切線,則實數(shù)m的取值范圍是m>2.
④若函數(shù)f(x)=
(3a-1)x+4a(x<1)
logax    (x≥1)
對任意的x1≠x2都有
f(x2)-f(x1)
x2-x1
<0
,則實數(shù)a的取值范圍是(-
1
7
,1].
其中正確命題的序號為
②③
②③

查看答案和解析>>


同步練習冊答案