已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數(shù)x、y,等式f(x)f(y)=f(x+y)恒成立,若數(shù)列{an}滿足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),則a2011的值為( 。
A.4017B.4018C.4019D.4021
D
請在這里輸入關(guān)鍵詞:
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

13、已知函數(shù)y=f(x)的定義域為R,值域為[1,2],求y=f(x+1)的值域
[1,2]

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,等式f(x)f(y)=f(x+y)成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),則a2009的值為( 。
A、4016B、4017
C、4018D、4019

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

21、已知函數(shù)y=f(x)的定義域為R,對任意x、x′∈R均有f(x+x′)=f(x)+f(x′),且對任意x>0,都有f(x)<0,f(3)=-3.
(1)試證明:函數(shù)y=f(x)是R上的單調(diào)減函數(shù);
(2)試證明:函數(shù)y=f(x)是奇函數(shù);
(3)試求函數(shù)y=f(x)在[m,n](m、n∈Z,且mn<0)上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數(shù)x,y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*)
,則a2010的值為( 。
A、4016B、4017
C、4018D、4019

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,且對于任意x1,x2∈R,存在正實數(shù)L,使得|f(x1)-f(x2)|≤L|x1-x2|都成立.
(1)若f(x)=
1+x2
,求L的取值范圍;
(2)當0<L<1時,數(shù)列{an}滿足an+1=f(an),n=1,2,….
①證明:
n
k=1
|ak-ak+1|≤
1
1-L
|a1-a2|
;
②令Ak=
a1+a2+…ak
k
(k=1,2,3,…)
,證明:
n
k=1
|Ak-Ak+1|≤
1
1-L
|a1-a2|

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的實數(shù)x、y,等式f(x)f(y)=f(x+y)恒成立,若數(shù)列{an}滿足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),則a2011的值為( 。
A、4017B、4018
C、4019D、4021

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,當x<0時,f(x)>1,且對任意的x、y∈R,等式f(x)f(y)=f(x+y)恒成立.若數(shù)列{an}滿足a1=f(0),且f(an+1)=
1
f(-2-an)
(n∈N*),則a2012的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,對任意x,x′∈R,均有f(x+x′)=f(x)+f(x′),且對任意x>0都有f(x)<0,f(3)=-3.
(1)試證明:函數(shù)y=f(x)在R上是單調(diào)函數(shù);
(2)判斷y=f(x)的奇偶性,并證明.
(3)解不等式f(x+3)+f(4x)≤2.
(4)試求函數(shù)y=f(x)在[m,n](mn<0且m,n∈R)上的值域.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)y=f(x)的定義域為R,滿足(x-2)f′(x)>0,且函數(shù)y=f(x+2)為偶函數(shù),a=f(2),b=f(log23),c=f(2
5
),則實數(shù)a,b,c的大小關(guān)系是( 。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù) y=f (x) 的定義域為 R,其導數(shù) f′(x) 滿足 0<f′(x)<1,常數(shù) α 為方程 f (x)=x的實數(shù)根.
(1)求證:當 x>α 時,總有 x>f (x) 成立;
(2)對任意 x1、x2若滿足|x1-α|<1,|x2-α|<1,求證:|f (x1)-f (x2)|<2.

查看答案和解析>>


同步練習冊答案