當(dāng)a、b∈R時(shí),不等式
|a+b|
|a|+|b|
≤1
成立的充要條件是( 。
A.a(chǎn)b<0B.a(chǎn)b>0C.a(chǎn)2+b2≠0D.a(chǎn)b≠0
C
請?jiān)谶@里輸入關(guān)鍵詞:
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)a、b∈R時(shí),不等式
|a+b|
|a|+|b|
≤1
成立的充要條件是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

當(dāng)a、b∈R時(shí),不等式
|a+b|
|a|+|b|
≤1
成立的充要條件是(  )
A.a(chǎn)b<0B.a(chǎn)b>0C.a(chǎn)2+b2≠0D.a(chǎn)b≠0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆山西省高二3月月考文科數(shù)學(xué)試卷(解析版) 題型:選擇題

當(dāng)x∈R時(shí),可得到不等式x≥2,x≥3,由此可推廣為xn+1,其中P等于   (     )

A、             B、           C、           D、

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x∈A,y∈B,(A、B⊆R)有唯一確定的f(x,y)與之對應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實(shí)數(shù)z均成立.
今給出四個(gè)二元函數(shù):
①f(x,y)=x2+y2;②f(x,y)=(x-y)2f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號(hào)是

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意x∈A,y∈B,(A、B?R)有唯一確定的f(x,y)與之對應(yīng),稱f(x,y)為關(guān)于x、y的二元函數(shù).現(xiàn)定義滿足下列性質(zhì)的二元函數(shù)f(x,y)為關(guān)于實(shí)數(shù)x、y的廣義“距離”:
(1)非負(fù)性:f(x,y)≥0,當(dāng)且僅當(dāng)x=y=0時(shí)取等號(hào);
(2)對稱性:f(x,y)=f(y,x);
(3)三角形不等式:f(x,y)≤f(x,z)+f(z,y)對任意的實(shí)數(shù)z均成立.
今給出四個(gè)二元函數(shù):①f(x,y)=x2+y2;②f(x,y)=(x-y)2;③f(x,y)=
x-y
;④f(x,y)=sin(x-y).
能夠成為關(guān)于的x、y的廣義“距離”的函數(shù)的所有序號(hào)是( 。
A、①B、②C、③D、④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)對任意的a、b∈R都有f(a+b)=f(a)+f(b)-1,且當(dāng)x>0時(shí),f(x)>1.
(1)求證:f(x)是R上的增函數(shù);
(2)若f(4)=5,解不等式f(3m2-m-2)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=mx3+nx2(m、n∈R ,m≠0)的圖像在(2,f(2))處的切線與x軸平行.

(1)求n,m的關(guān)系式并求f(x)的單調(diào)減區(qū)間;

(2)證明:對任意實(shí)數(shù)0<x1<x2<1, 關(guān)于x的方程:

在(x1,x2)恒有實(shí)數(shù)解

(3)結(jié)合(2)的結(jié)論,其實(shí)我們有拉格朗日中值定理:若函數(shù)f(x)是在閉區(qū)間[a,b]上連續(xù)不斷的函數(shù),且在區(qū)間(a,b)內(nèi)導(dǎo)數(shù)都存在,則在(a,b)內(nèi)至少存在一點(diǎn)x0,使得.如我們所學(xué)過的指、對數(shù)函數(shù),正、余弦函數(shù)等都符合拉格朗日中值定理?xiàng)l件.試用拉格朗日中值定理證明:

當(dāng)0<a<b時(shí),(可不用證明函數(shù)的連續(xù)性和可導(dǎo)性)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年廣東省廣州市增城中學(xué)高三(上)綜合測試數(shù)學(xué)試卷1(理科)(解析版) 題型:填空題

已知函數(shù)f(x)對任意的a、b∈R都有f(a+b)=f(a)+f(b)-1,且當(dāng)x>0時(shí),f(x)>1.
(1)求證:f(x)是R上的增函數(shù);
(2)若f(4)=5,解不等式f(3m2-m-2)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省寶雞中學(xué)高三(上)第二次月考數(shù)學(xué)試卷(理科)(解析版) 題型:填空題

已知函數(shù)f(x)對任意的a、b∈R都有f(a+b)=f(a)+f(b)-1,且當(dāng)x>0時(shí),f(x)>1.
(1)求證:f(x)是R上的增函數(shù);
(2)若f(4)=5,解不等式f(3m2-m-2)<3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)對任意的a、b∈R,都有f(ab)=f(a)+f(b)-1,并且當(dāng)x>0時(shí),f(x)>1.

(1)求證:f(x)是R上的增函數(shù);

(2)若f(4)=5,解不等式f(3m2m-2)<3.

查看答案和解析>>


同步練習(xí)冊答案