已知條件甲:函數(shù)f(x)=ax(其中a>0且a≠1)在其定義域內(nèi)是減函數(shù),條件乙:loga
|
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
科目:高中數(shù)學(xué) 來源:不詳 題型:單選題
1 |
2 |
A.充分而不必要的條件 | B.必要而不充分的條件 |
C.充要條件 | D.既不充分也不必要條件 |
科目:高中數(shù)學(xué) 來源:成都模擬 題型:單選題
1 |
2 |
A.充分而不必要的條件 |
B.必要而不充分的條件 |
C.充要條件 |
D.既不充分也不必要的條件 |
科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年重慶市江北中學(xué)高三(上)周練數(shù)學(xué)試卷1(理科)(解析版) 題型:選擇題
科目:高中數(shù)學(xué) 來源:2008-2009學(xué)年四川省成都市高三摸底數(shù)學(xué)試卷(文科)(解析版) 題型:選擇題
科目:高中數(shù)學(xué) 來源: 題型:單選題
科目:高中數(shù)學(xué) 來源: 題型:
1 |
2 |
科目:高中數(shù)學(xué) 來源: 題型:
7、9、10班同學(xué)做乙題,其他班同學(xué)任選一題,若兩題都做,則以較少得分計入總分.
(甲)已知f(x)=ax-ln(-x),x∈[-e,0),,其中e=2.718 28…是自然對數(shù)的底數(shù),a∈R.
(1)若a=-1,求f(x)的極值;
(2)求證:在(1)的條件下,;
(3)是否存在實數(shù)a,使f(x)的最小值是3,如果存在,求出a的值;如果不存在,說明理由.
(乙)定義在(0,+∞)上的函數(shù),其中e=2.718 28…是自然對數(shù)的底數(shù),a∈R.
(1)若函數(shù)f(x)在點x=1處連續(xù),求a的值;
(2)若函數(shù)f(x)為(0,1)上的單調(diào)函數(shù),求實數(shù)a的取值范圍;并判斷此時函數(shù)f(x)在(0,+∞)上是否為單調(diào)函數(shù);
(3)當(dāng)x∈(0,1)時,記g(x)=lnf(x)+x2-ax. 試證明:對,當(dāng)n≥2時,有
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com