已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時,f(x)=-x(2+x),當(dāng)x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當(dāng)a=2,m=0時,直線l與圖象G恰有3個公共點;
②當(dāng)a=3,m=
1
4
時,直線l與圖象G恰有6個公共點;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是( 。
A.①②B.①③C.②③D.①②③
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2013年北京市豐臺區(qū)高考數(shù)學(xué)二模試卷(文科)(解析版) 題型:選擇題

已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時,f(x)=-x(2+x),當(dāng)x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當(dāng)a=2,m=0時,直線l與圖象G恰有3個公共點;
②當(dāng)a=3,m=時,直線l與圖象G恰有6個公共點;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是( )
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:豐臺區(qū)二模 題型:單選題

已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時,f(x)=-x(2+x),當(dāng)x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當(dāng)a=2,m=0時,直線l與圖象G恰有3個公共點;
②當(dāng)a=3,m=
1
4
時,直線l與圖象G恰有6個公共點;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是( 。
A.①②B.①③C.②③D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年安徽省安慶市望江四中高三(上)第一次月考數(shù)學(xué)試卷(理科)(解析版) 題型:選擇題

已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時,f(x)=-x(2+x),當(dāng)x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當(dāng)a=4時,存在直線l與圖象G恰有5個公共點;
②若對于?m∈[0,1],直線l與圖象G的公共點不超過4個,則a≤2;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是( )
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2013年北京市豐臺區(qū)高考數(shù)學(xué)二模試卷(理科)(解析版) 題型:選擇題

已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時,f(x)=-x(2+x),當(dāng)x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當(dāng)a=4時,存在直線l與圖象G恰有5個公共點;
②若對于?m∈[0,1],直線l與圖象G的公共點不超過4個,則a≤2;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是( )
A.①②
B.①③
C.②③
D.①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:單選題

已知偶函數(shù)f(x)(x∈R),當(dāng)x∈(-2,0]時,f(x)=-x(2+x),當(dāng)x∈[2,+∞)時,f(x)=(x-2)(a-x)(a∈R).
關(guān)于偶函數(shù)f(x)的圖象G和直線l:y=m(m∈R)的3個命題如下:
①當(dāng)a=4時,存在直線l與圖象G恰有5個公共點;
②若對于?m∈[0,1],直線l與圖象G的公共點不超過4個,則a≤2;
③?m∈(1,+∞),?a∈(4,+∞),使得直線l與圖象G交于4個點,且相鄰點之間的距離相等.
其中正確命題的序號是


  1. A.
    ①②
  2. B.
    ①③
  3. C.
    ②③
  4. D.
    ①②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(Ⅰ)已知奇函數(shù)f(x)(x∈R),當(dāng)x>0時,f(x)=x(5-x)+1,求f(x)在R上的表達(dá)式.
(Ⅱ)設(shè)定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1-m)<f(m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年北京市重點中學(xué)高三(上)9月月考數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

(Ⅰ)已知奇函數(shù)f(x)(x∈R),當(dāng)x>0時,f(x)=x(5-x)+1,求f(x)在R上的表達(dá)式.
(Ⅱ)設(shè)定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1-m)<f(m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(Ⅰ)已知奇函數(shù)f(x)(x∈R),當(dāng)x>0時,f(x)=x(5-x)+1,求f(x)在R上的表達(dá)式.
(Ⅱ)設(shè)定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1-m)<f(m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(Ⅰ)已知奇函數(shù)f(x)(x∈R),當(dāng)x>0時,f(x)=x(5-x)+1,求f(x)在R上的表達(dá)式.
(Ⅱ)設(shè)定義在[-2,2]上的偶函數(shù)f(x)在區(qū)間[0,2]上單調(diào)遞減,若f(1-m)<f(m),求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)f(x)對?x∈R滿足f(2+x)=f(2-x),且當(dāng)-2≤x≤0時,f(x)=log2(1-x),則f(2013)的值為( 。

查看答案和解析>>


同步練習(xí)冊答案