分析 根據(jù)此時順時針方向一圈一圈地連續(xù)報數(shù)循環(huán)了n次,則總的報了(100-1)=99次,利用n只能取5、6、7、8、9,如此才可保證$\frac{99}{n}$的值在10--20之間得出答案即可.
解答 解:假設(shè)此時順時針方向一圈一圈地連續(xù)報數(shù)循環(huán)了n次,則總的報了(100-1)=99次,
(循環(huán)一次即從第一個人報數(shù)到一圈的最后一個人)
則:小朋友的人數(shù)=$\frac{99}{n}$,而且是十幾個小朋友,
那么這里n只能取5、6、7、8、9,如此才可保證$\frac{99}{n}$的值在10--20之間,
驗證可知:只有當n=9 時,$\frac{99}{n}$=11 才能取整.
故總共有11個小朋友.
答:共有11個小朋友.
點評 此題主要考查了約數(shù)與倍數(shù),根據(jù)已知得出小朋友的人數(shù)=$\frac{99}{n}$是解題關(guān)鍵.
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com