古希臘著名的畢達哥拉斯學派把1、3、6、10…這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16…這樣的數(shù)稱為“正方形數(shù)”,從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( 。
分析:題目中“三角形數(shù)”的規(guī)律為1、3、6、10、15、21…“正方形數(shù)”的規(guī)律為1、4、9、16、25…,根據(jù)題目已知條件:從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.可得出最后結(jié)果.
解答:解:這些三角形數(shù)的規(guī)律是1,3,6,10,15,21,28,36,45,…,
且正方形數(shù)是這串數(shù)中相鄰兩數(shù)之和,
很容易看到:恰有36=15+21.
故選:C.
點評:本題考查探究、歸納的數(shù)學思想方法.本題是一道找規(guī)律的題目,這類題型在中考中經(jīng)常出現(xiàn).對于找規(guī)律的題目首先應找出哪些部分發(fā)生了變化,是按照什么規(guī)律變化的.
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:單選題

古希臘著名的畢達哥拉斯學派把1、3、6、10…這樣的數(shù)稱為“三角形數(shù)”,而把1、4、9、16…這樣的數(shù)稱為“正方形數(shù)”,從圖中可以發(fā)現(xiàn),任何一個大于1的“正方形數(shù)”都可以看作兩個相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是


  1. A.
    13=3+10
  2. B.
    25=9+16
  3. C.
    36=15+21
  4. D.
    49=18+31

查看答案和解析>>

同步練習冊答案