分析 根據(jù)三角形的內(nèi)角和定理“三角形的內(nèi)角和是180°”,由三角形三個內(nèi)角度數(shù)之比為2:2:4,即可求得三個內(nèi)角的度數(shù),再根據(jù)三個內(nèi)角的最大度數(shù)得出是直角三角形,兩個銳角相等得出這是等腰三角形,據(jù)此得解.
解答 解:2+2+4=8(份),
根據(jù)三角形的內(nèi)角和定理,得三個內(nèi)角分別是:
180°×$\frac{2}{8}$=45°,180°×$\frac{2}{8}$=45°,180°×$\frac{4}{8}$=90°.
所以這是一個等腰直角三角形.
故答案為:等腰直角.
點評 此題考查了三角形的內(nèi)角和定理,比的應(yīng)用,三角形的內(nèi)角和.三角形內(nèi)角和定理:三角形內(nèi)角和是180°.
科目:小學數(shù)學 來源: 題型:選擇題
A. | 15a元 | B. | 15 b元 | C. | (5a+10b)元 | D. | 15(a+b)元 |
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:選擇題
A. | 213.52 | B. | 200.96 | C. | 188.4 |
查看答案和解析>>
科目:小學數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com