平行四邊形紙片ABCD中,AB=5厘米,BC=10厘米,BC邊上的高是4厘米,從中剪去一個正方形后,求剩余部分的面積的最小值.

解:剪去的最大正方形面積:4×4=16(平方厘米),
平行四邊形的面積:10×4=40(平方厘米),
剩余部分的面積的最小值:40-16=24(平方厘米);
答:剩余部分的面積的最小值是24平方厘米.

分析:根據(jù)題意,要求剩余部分面積的最小值,就要保證剪去的正方形的面積最大;也就是以BC邊上的高4厘米作為正方形的邊長,求出正方形的面積,再求出平行四邊形的面積,進(jìn)而用平行四邊形的面積減去最大的正方形的面積,問題得解.
點(diǎn)評:此題相當(dāng)于考查組合圖形的面積,關(guān)鍵是理解要求剩余部分面積的最小值,就要保證剪去的正方形的面積最大,進(jìn)而分別求出平行四邊形的面積和里面的正方形面積,進(jìn)而問題得解.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

平行四邊形紙片ABCD中,AB=5厘米,BC=10厘米,BC邊上的高是4厘米,從中剪去一個正方形后,求剩余部分的面積的最小值.

查看答案和解析>>

同步練習(xí)冊答案