數(shù)學公式=數(shù)學公式,a等于[注:“*”號代表“×”].


  1. A.
    1
  2. B.
    7
  3. C.
    49
  4. D.
    42
D
分析:由題意可知:10變成10×7=70,要使分數(shù)的大小不變,分子也應該乘7,于是可以求出擴大后的分子,減去原分子,就是問題的答案.
解答:因為的分母乘7,
要使分數(shù)的大小不變,分子也應該乘7,
即原分子7變成7×7=49,
所以原分子應加上49-7=42,
即a為42;
故選:D.
點評:解答此題的關鍵是:看清楚分母的變化,即分母擴大了幾倍,分子也擴大相同的倍數(shù),從而問題得解.
練習冊系列答案
相關習題

科目:小學數(shù)學 來源: 題型:

(2012?南安市模擬)
7
10
=
7+a
10*7
,a等于( 。注:“*”號代表“×”].

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:閱讀理解

閱讀下列材料,并解決后面的問題.
★閱讀材料:
我國是歷史上較早發(fā)現(xiàn)并運用“勾股定理”的國家之一.我中古代把直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請運用“勾股定理”解決以下問題:

(1)如圖一,分別以直角三角形的邊為邊長作正方形,其中s1=400,s2=225,則s3=
625
625

(2)如圖二,是一個園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個小園孔,則一條直達底部的直吸管的最大長度是
17
17
.注:罐壁厚度和頂部園孔直徑忽略不計.
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=
13.5
13.5
. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點有一只螞蟻,它想吃到與A點相對的B點處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側面展開后得到一個長方形,如圖五所示(A點的位置已經給出),請在圖中中標出B點的位置并連接AB.
②小聰認為線段AB的長度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是
13
13
厘米.注:π值取3.
(5)如圖六,在長方形的底面A點有一只螞蟻,想吃到上底面與A點相對的B點處的食物,它沿長方形表面爬行的最短路程是
15
15
厘米.

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:

數(shù)學家維納是控制論的創(chuàng)始人.在他獲得哈佛大學博士學位的授予儀式上,有人看他一臉稚氣的樣子,好奇地詢問他的年齡.維納的回答很有趣,他說:“我的年齡的立方是一個四位數(shù),年齡的四次方是一個六位數(shù),這兩個數(shù)剛好把0-9這10個數(shù)字全都用上了,不重也不漏,”那么,維納這一年
18
18
歲,(注:數(shù)a的立方等于a×a×a,數(shù)a的四次方等于a×a×a×a)

查看答案和解析>>

科目:小學數(shù)學 來源: 題型:解答題

閱讀下列材料,并解決后面的問題.
★閱讀材料:
我國是歷史上較早發(fā)現(xiàn)并運用“勾股定理”的國家之一.我中古代把直角三角形中較短的直角邊稱為“勾”,較長的直角邊稱為“股”,斜邊稱為“弦”,“勾股定理”因此而得名.
勾股定理:如果直角三角形兩直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.即直角三角形兩直角邊的平方和等于斜邊的平方.請運用“勾股定理”解決以下問題:

(1)如圖一,分別以直角三角形的邊為邊長作正方形,其中s1=400,s2=225,則s3=________.
(2)如圖二,是一個園柱形飲料罐,底面半徑=8,高=15,頂面正中有一個小園孔,則一條直達底部的直吸管的最大長度是________.注:罐壁厚度和頂部園孔直徑忽略不計.
(3)如圖三,所示的直角三角形中,AB=6.則s1+s2的值=________. 注π值取3.
(4)如圖四的圓柱,高=5厘米,底面半徑=4厘米,在園柱底面A點有一只螞蟻,它想吃到與A點相對的B點處的食物,需要爬行的路程是多少?小聰是這樣思考的:
①將該園柱的側面展開后得到一個長方形,如圖五所示(A點的位置已經給出),請在圖中中標出B點的位置并連接AB.
②小聰認為線段AB的長度是螞蟻爬行的最短路程,那么螞蟻爬行的最短路程是________厘米.注:π值取3.
(5)如圖六,在長方形的底面A點有一只螞蟻,想吃到上底面與A點相對的B點處的食物,它沿長方形表面爬行的最短路程是________厘米.

查看答案和解析>>

同步練習冊答案