若干只同樣的盒子排成一列,小聰把42個同樣的小球放在這些盒子里然后外出,小明從每支盒子里取出一個小球,然后把這些小球再放到小球數(shù)最少的盒子里去.再把盒子重排了一下.小聰回來,仔細(xì)查看,沒有發(fā)現(xiàn)有人動過小球和盒子.問:一共有多少只盒子?
分析:設(shè)原來小球數(shù)最少的盒子里裝有a只小球,現(xiàn)在增加了b只,由于小聰沒有發(fā)現(xiàn)有人動過小球和盒子,這說明現(xiàn)在又有了一只裝有a個小球的盒子,而這只盒子里原來裝有(a+1)個小球.
同樣,現(xiàn)在另有一個盒子裝有(a+1)個小球,這只盒子里原來裝有(a+2)個小球.
類推,原來還有一只盒子裝有(a+3)個小球,(a+4)個小球等等,故原來那些盒子中裝有的小球數(shù)是一些連續(xù)整數(shù).
所以將42分拆成若干個連續(xù)整數(shù)的和,一共有多少種分法,每一種分法有多少個加數(shù),據(jù)此解答.
解答:解:設(shè)原來小球數(shù)最少的盒子里裝有a只小球,現(xiàn)在增加了b只,由于小聰沒有發(fā)現(xiàn)有人動過小球和盒子,
這說明現(xiàn)在又有了一只裝有a個小球的盒子,而這只盒子里原來裝有(a+1)個小球.
同樣,現(xiàn)在另有一個盒子裝有(a+1)個小球,這只盒子里原來裝有(a+2)個小球.
類推,原來還有一只盒子裝有(a+3)個小球,(a+4)個小球等等,
故原來那些盒子中裝有的小球數(shù)是一些連續(xù)整數(shù).
將42分拆成若干個連續(xù)整數(shù)的和,
因?yàn)?2=6×7,故可以看成7個6的和,又(7+5)+(8+4)+(9+3)是6個6,從而42=3+4+5+6+7+8+9,一共有7個加數(shù);
又因?yàn)?2=14×3,故可將42:13+14+15,一共有3個加數(shù);
又因?yàn)?2=21×2,故可將42=9+10+11+12,一共有4個加數(shù).
所以原問題有三個解:一共有7只盒子、4只盒子或3只盒子.
答:一共有7只、4只或3只盒子.
點(diǎn)評:解答本題的關(guān)鍵是將問題歸結(jié)為把42分拆成若干個連續(xù)整數(shù)的和.
練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案