如圖,在直角梯形ABCD中,AD∥BC,∠B=90°,AD=6,BC=8,AB=3
,點M是BC的中點.點P從點M出發(fā)沿MB以每秒1個單位長的速度向B點勻速運動,到達B點后
立刻以原速度沿BM返回點Q從點M出發(fā)以每秒1個單位長的速度在射線MC上勻速運動.在點P、Q的運動過程中,以PQ為邊作等邊三角形EPQ,使它與梯形ABCD在射線BC的同側(cè).點P、Q同時出發(fā),當(dāng)點P返回到點M時停止運動,點Q也隨之停止.設(shè)點P、Q運動的時間是t秒
(1)設(shè)PQ的長為y,在點P從點M向點B運動的過程中,寫出y與t之間的函數(shù)關(guān)系式(不必寫t的取值范圍)
(2)當(dāng)BP=1時,求△EPQ與梯形ABCD重疊部分的面積
(3)隨著時間t的變化,線段AD會有一部分被△EPQ覆蓋,被覆蓋線段的長度在某個時刻會達到最大值,請回答:該最大值能否持續(xù)一個時間段?若能,直接寫出t的取值范圍;若不能請說明理由.