【題目】已知實數(shù),函數(shù)(x∈R).
(1) 求函數(shù)的單調(diào)區(qū)間;
(2) 若函數(shù)有極大值32,求實數(shù)a的值.
【答案】(1)見解析(2)a=27
【解析】
(1)首先求得函數(shù)的導函數(shù),然后分類討論確定函數(shù)的單調(diào)區(qū)間即可;
(2)由題意得到關于a的方程,解方程求得實數(shù)a的值,然后檢驗是否符合題意即可.
(1)∵f(x)=ax3-4ax2+4ax,
∴f′(x)=3ax2-8ax+4a=a(3x-2)(x-2).
令f′(x)=0,得x=或x=2.
當a>0時,函數(shù)f(x)的單調(diào)增區(qū)間是,(2,+∞);單調(diào)減區(qū)間是.
當a<0時,函數(shù)f(x)的單調(diào)增區(qū)間是,單調(diào)減區(qū)間是,(2,+∞).
(2)∵f(x)=ax(x-2)2(x∈R)有極大值32,而
∴當x=時,f(x)取得極大值32,即a2=32,∴a=27.
當a=27時,由(1)知,f(x)在增,在遞減,符合題設.
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com