10×x=
8
25
33÷x=
11
20
3
5
=18×
1
4
1
3
×
3
5
=4.
4x-3×9=29
1
2
x+
1
6
x=4.
3
4
x+
1
4
=
3
8
分析:(1)根據(jù)等式的性質(zhì),方程兩邊同除以10來(lái)求解;
(2)根據(jù)等式的性質(zhì),方程兩邊同乘上x,再方程兩邊同除以
11
20
即可;
(3)先求出18×
1
4
的積,再根據(jù)等式的性質(zhì),方程的兩邊同除以
3
5
求解即可;
(4)先求出
1
3
×
3
5
的積得
1
5
,再根據(jù)等式的性質(zhì),方程的兩邊同除以
1
5
即可;
(5)先求出3×9得27,再根據(jù)等式的性質(zhì),方程兩邊同加上27,再方程的兩邊同除以4來(lái)求解;
(6)先求出
1
2
x+
1
6
x得
2
3
x,再根據(jù)等式的性質(zhì),方程兩邊同除以
2
3
即可;
(7)根據(jù)等式的性質(zhì),方程的兩邊同減去
1
4
,再方程的兩邊同除以
3
4
即可.
解答:解:(1)10×x=
8
25
,
     10×x÷10=
8
25
÷10,
             x=
4
125


(2)33÷x=
11
20
,
  33÷x×x=
11
20
×x,
   
11
20
×x=33,
11
20
×x÷
11
20
=33÷
11
20
,.
         x=60;

(3)x×
3
5
=18×
1
4
,
     x×
3
5
=
9
2
,
  x×
3
5
÷
3
5
=
9
2
÷
3
5
,
         x=
15
2
;

(4)x×
1
3
×
3
5
=4,
         x×
1
5
=4,
      x×
1
5
÷
1
5
=4÷
1
5
,
            x=20;

(5)4x-3×9=29,
    4x-27+27=29+27,
          4x=56,
           x=14;

(6)
1
2
x+
1
6
x=4,
        
2
3
x=4,
     
2
3
x÷
2
3
=4÷
2
3

           x=6;

(7)
3
4
x+
1
4
=
3
8
,
 
3
4
x+
1
4
-
1
4
=
3
8
-
1
4
,
       
3
4
x=
1
8
,
    
3
4
x÷
3
4
=
1
8
÷
3
4
,
          x=
1
6
點(diǎn)評(píng):此題考查利用等式的性質(zhì)解方程,即“方程的兩邊同時(shí)加上或減去一個(gè)相同的數(shù),同時(shí)乘或除以一個(gè)相同的數(shù)(0除外),等式仍然成立”;要注意:在脫式時(shí)等號(hào)需對(duì)齊.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

解方程
10×X=
8
25
33÷X=
11
20
1
3
×
3
5
=4
3X-
3
5
X=18×
1
4
3
4
X-
2
3
X=
1
36
2X:
1
3
=6
2
3
-
1
4
=
3
4

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來(lái)源: 題型:

解方程.
10×X=
8
25
       33÷X=
11
20
      X×
1
3
×
3
5
=4       X×
3
5
=18×
1
4

查看答案和解析>>

同步練習(xí)冊(cè)答案