規(guī)定1!=1×1,2!=2×1,3!=3×2×,…已知a!=5040,那么a=( 。
分析:1!=1×1,2!=2×1,3!=3×2×1,…可知:
a!=a×(a-1)×(a-2)×(a-3)×…×2×1;
a!=5040,求a就是求1×2×3×4×…×a=5040;逐步計(jì)算,看乘到哪個(gè)數(shù)積是5040即可.
解答:解:a!=5040,即1×2×3×4×…×a=5040;
因?yàn)?×2×3×4×5×6×7=5040;
所以a=7;
故選:C.
點(diǎn)評(píng):本題理解a!的計(jì)算方法,然后由此逐數(shù)相乘求解.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:小學(xué)數(shù)學(xué) 來源: 題型:

規(guī)定1△3=1×2×3,2△4=2×3×4×5,4△3=4×5×6,則(6△4)÷(4△4)=
3.6
3.6

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

規(guī)定:如圖1中,方格里的數(shù)表示在其周圍8個(gè)方格中共有多少個(gè)△.即以“1”為中心,在它的四周8個(gè)方格中只能有1個(gè)△;以“2”為中心,在它的四周8個(gè)方格中只能有2個(gè)△;以“3”為中心,在它的四周8個(gè)方格中只能有3個(gè)△;依此類推.

按上述規(guī)定,在如圖2中一共可以畫12個(gè)△.現(xiàn)在已經(jīng)畫好了其中的2個(gè),請(qǐng)你在合適的空格中補(bǔ)上其余的10個(gè).

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

如圖,圓周上順次排列著1、2、3、…、12這十二個(gè)數(shù),我們規(guī)定:相鄰的四個(gè)數(shù)a1、a2、a3、a4順序顛倒為a4、a3、a2、a1,稱為一次“變換”(如:1、2、3、4變?yōu)?、3、2、1,又如:11、12、1、2變?yōu)?、1、12、11).能否經(jīng)過有限次“變換”,將十二個(gè)數(shù)的順序變?yōu)?、1、2、3、…8、10、11、12(如圖)?請(qǐng)說明理由.

查看答案和解析>>

科目:小學(xué)數(shù)學(xué) 來源: 題型:

(1)5678-1999                             (2)8765+1998
(3)1+2+3+…+99+100                        (4)2+4+6+…+100
(5)規(guī)定a△b=3×a-2×b,①求 3△2,2△3;②求(17△6)△2.

查看答案和解析>>

同步練習(xí)冊(cè)答案