解:(1)x-0.25x=3,
(1-0.25)x=3,
0.75x=3,
0.75x÷0.75=3÷0.75,
x=4;
(2)x+
x=21,
(1+
)x=21,
1.4x=21,
1.4x÷1.4=21÷1.4,
x=15;
(3)3.6x÷2=2.16,
3.6x÷2×2=2.16×2,
3.6x=4.32,
3.6x÷3.6=4.32÷3.6,
x=1.2.
分析:(1)原式變?yōu)椋?-0.25)x=3,即0.75x=3,根據(jù)等式的性質(zhì),兩邊同除以0.75即可;
(2)原式變?yōu)椋?+
)x=21,即1.4x=21,根據(jù)等式的性質(zhì),兩邊同除以1.4即可;
(3)根據(jù)等式的性質(zhì),兩邊同乘2,得3.6x=4.32,兩邊同除以3.6即可.
點評:在解方程時應(yīng)根據(jù)等式的性質(zhì),即等式兩邊同加上、同減去、同乘上或同除以某一個數(shù)(0除外),等式的兩邊仍相等,同時注意“=”上下要對齊.