【題目】在菱形中,于點(diǎn),于點(diǎn),且、分別為、的中點(diǎn),(如圖)則等于( )
A.
B.
C.
D.
【答案】C
【解析】
首先連接AC,由四邊形ABCD是菱形,AE⊥BC于點(diǎn)E,AF⊥CD于點(diǎn)F,且E、F分別為BC、CD的中點(diǎn),易得△ABC與△ACD是等邊三角形,即可求得∠B=∠D=60°,繼而求得∠BAD,∠BAE,∠DAF的度數(shù),則可求得∠EAF的度數(shù).
連接AC.
∵AE⊥BC,AF⊥CD,且E、F分別為BC、CD的中點(diǎn),∴AB=AC,AD=AC.
∵四邊形ABCD是菱形,∴AB=BC=CD=AD,∴AB=BC=AC,AC=CD=AD,∴△ABC與△ACD是等邊三角形,∴∠B=∠D=60°,∴∠BAE=∠DAF=30°,∠BAD=180°﹣∠B=120°,∴∠EAF=∠BAD﹣∠BAE﹣∠DAF=60°.
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在中,是的中點(diǎn),是的中點(diǎn),過點(diǎn)作交的延長(zhǎng)線于點(diǎn).
求證:;
當(dāng)滿足什么條件時(shí),四邊形是菱形,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠AOB=30°,點(diǎn)P為∠AOB內(nèi)一點(diǎn),OP=8.點(diǎn)M、N分別在OA、OB上.當(dāng)△PMN周長(zhǎng)最小時(shí),下列結(jié)論:①∠MPN等于120°;②∠MPN等于100°;③△PMN周長(zhǎng)最小值為4;④△PMN周長(zhǎng)最小值為8,其中正確的是( 。
A.①③B.②③C.①④D.②④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,A(0,3)、B(3,0)、C(﹣3,0).
(1)過B作直線MN⊥AB,P為線段OC上的一動(dòng)點(diǎn),AP⊥PH交直線M于點(diǎn)H,證明:PA=PH.
(2)在(1)的條件下,若在點(diǎn)A處有一個(gè)等腰Rt△APQ繞點(diǎn)A旋轉(zhuǎn),且AP=PQ,∠APQ=90°,連接BQ,點(diǎn)G為BQ的中點(diǎn),試猜想線段OG與線段PG的數(shù)量關(guān)系與位置關(guān)系,并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,BE、CE分別是∠ABC和∠ACB的平分線,過點(diǎn)E作DF∥BC交AB于D,交AC于F,若AB =5,AC =4,則△ADF周長(zhǎng)為( ).
A.7B.8C.9D.10
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△DEC都是等腰直角三角形,∠ACB=∠DCE=90°,E在線段AC上,連接AD, BE的延長(zhǎng)線交AD于F.
(1)猜想線段BE、AD的數(shù)量關(guān)系和位置關(guān)系:_______________(不必證明);
(2)當(dāng)點(diǎn)E為△ABC內(nèi)部一點(diǎn)時(shí),使點(diǎn)D和點(diǎn)E分別在AC的兩側(cè),其它條件不變.
①請(qǐng)你在圖2中補(bǔ)全圖形;
②(1)中結(jié)論成立嗎?若成立,請(qǐng)證明;若不成立,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,,點(diǎn)、分別在、上,連接,、的平分線交于點(diǎn),、的平分線交于點(diǎn).
求證:四邊形是矩形.
小明在完成的證明后繼續(xù)進(jìn)行了探索,過點(diǎn)作,分別交、于點(diǎn)、,過點(diǎn)作,分別交、于點(diǎn)、,得到四邊形.此時(shí),他猜想四邊形是菱形.請(qǐng)?jiān)谙铝锌驁D中補(bǔ)全他的證明思路.
小明的證明思路:由,,易證,四邊形是平行四邊形.要證□是菱形,只要證.由已知條件________,,可證,故只要證,即證,易證________,________,故只要證,易證,,________,故得,即可得證.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC中,AB=AC,∠A=36°AB的中垂線DE交AC于D,交AB于E,下述結(jié)論:(1)BD平分∠ABC;(2)AD=BD=BC;(3)△BCD的周長(zhǎng)等于AB+BC;(4)D是AC中點(diǎn)其中正確的命題序號(hào)是_________________
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某學(xué)校后勤人員到文具店給八年級(jí)學(xué)生購(gòu)買考試專用文具包,該文具店規(guī)定一次性購(gòu)買400個(gè)以上,可享受八折優(yōu)惠.若按八年級(jí)學(xué)生實(shí)際人數(shù)每人購(gòu)買一個(gè),不能享受八折優(yōu)惠,需付款1936元;若再多買88個(gè)就可享受八折優(yōu)惠,并且同樣只需付款1936元求該校八年級(jí)學(xué)生的總?cè)藬?shù)和文具包的價(jià)格.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com