已知拋物線y=x²-4x+3.
(1)該拋物線的對(duì)稱軸是       ,頂點(diǎn)坐標(biāo)               ;
(2)將該拋物線向上平移2個(gè)單位長(zhǎng)度,再向左平移3個(gè)單位長(zhǎng)度得到新的二次函數(shù)圖像,請(qǐng)寫出相應(yīng)的解析式,并用列表,描點(diǎn),連線的方法畫出新二次函數(shù)的圖像;
x

 
 
 
 
 

y

 
 
 
 
 

 

(3)新圖像上兩點(diǎn)A(x1,y1),B(x2,y2),它們的橫坐標(biāo)滿足<-2,且-1<<0,試比較y1,y2,0三者的大小關(guān)系.
(1)對(duì)稱軸是直線x=2,頂點(diǎn)坐標(biāo)(2,-1);(2)圖象見解析;(3)y1>y2>0.

試題分析:(1)把二次函數(shù)解析式整理成頂點(diǎn)式形式,然后寫出對(duì)稱軸和頂點(diǎn)坐標(biāo)即可;
(2)根據(jù)向左平移橫坐標(biāo)減,向上平移縱坐標(biāo)加求出平移后的頂點(diǎn)坐標(biāo),然后利用頂點(diǎn)式形式寫出函數(shù)解析式即可,再根據(jù)要求作出函數(shù)圖象;
(3)根據(jù)函數(shù)圖象,利用數(shù)形結(jié)合的思想求解即可.
試題解析:(1)∵y=x2-4x+3=(x-2)2-1,
∴該拋物線的對(duì)稱軸是直線x=2,頂點(diǎn)坐標(biāo)(2,-1);
(2)∵向上平移2個(gè)單位長(zhǎng)度,再向左平移3個(gè)單位長(zhǎng)度,
∴平移后的拋物線的頂點(diǎn)坐標(biāo)為(-1,1),
∴平移后的拋物線的解析式為y=(x+1)2+1,
即y=x2+2x+2,
x

-3
-2
-1
0
1

y

5
2
1
2
5


(3)由圖可知,x1<-2時(shí),y1>2,
-1<x2<0時(shí),1<y2<2,
∴y1>y2>0.
考點(diǎn): 1.二次函數(shù)圖象上點(diǎn)的坐標(biāo)特征;2.二次函數(shù)圖象與幾何變換.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=ax2+bx+c與x軸的一個(gè)交點(diǎn)A的坐標(biāo)為(﹣1,0),對(duì)稱軸為直線x=﹣2.

(1)求拋物線與x軸的另一個(gè)交點(diǎn)B的坐標(biāo);
(2)點(diǎn)D是拋物線與y軸的交點(diǎn),點(diǎn)C是拋物線上的另一點(diǎn).若以AB為一底邊的梯形ABCD的面積為9.
求此拋物線的解析式,并指出頂點(diǎn)E的坐標(biāo);
(3)點(diǎn)P是(2)中拋物線對(duì)稱軸上一動(dòng)點(diǎn),且以1個(gè)單位/秒的速度從此拋物線的頂點(diǎn)E向上運(yùn)動(dòng).設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間為t秒.
①當(dāng)t為   秒時(shí),△PAD的周長(zhǎng)最?當(dāng)t為     秒時(shí),△PAD是以AD為腰的等腰三角形?(結(jié)果保留根號(hào))
②點(diǎn)P在運(yùn)動(dòng)過程中,是否存在一點(diǎn)P,使△PAD是以AD為斜邊的直角三角形?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知直線y=kx-3與x軸交于點(diǎn)A(4,0),與y軸交于點(diǎn)C,拋物線經(jīng)過點(diǎn)A和點(diǎn)C,動(dòng)點(diǎn)P在x軸上以每秒1個(gè)長(zhǎng)度單位的速度由拋物線與x軸的另一個(gè)交點(diǎn)B向點(diǎn)A運(yùn)動(dòng),點(diǎn)Q由點(diǎn)C沿線段CA向點(diǎn)A運(yùn)動(dòng)且速度是點(diǎn)P運(yùn)動(dòng)速度的2倍.

(1)求此拋物線的解析式和直線的解析式;
(2)如果點(diǎn)P和點(diǎn)Q同時(shí)出發(fā),運(yùn)動(dòng)時(shí)間為t(秒),試問當(dāng)t為何值時(shí),以A、P、Q為頂點(diǎn)的三角形與△AOC相似;
(3)在直線CA上方的拋物線上是否存在一點(diǎn)D,使得△ACD的面積最大.若存在,求出點(diǎn)D的坐標(biāo);若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線y=-x2+(m-1)x+m與y軸交于(0,3)點(diǎn),

(1)求出這條拋物線;
(2)求它與x軸的交點(diǎn)和拋物線頂點(diǎn)的坐標(biāo);
(3)x取什么值時(shí),拋物線在x軸上方?
(4)x取什么值時(shí),y的值隨x的增大而減小?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,拋物線與x軸交于點(diǎn)A(—2,0),交y軸于點(diǎn)B(0,).直過點(diǎn)A與y軸交于點(diǎn)C,與拋物線的另一個(gè)交點(diǎn)是D.

(1)求拋物線與直線的解析式;
(2)設(shè)點(diǎn)P是直線AD下方的拋物線上一動(dòng)點(diǎn)(不與點(diǎn)A、D重合),過點(diǎn)P作 y軸的平行線,交直線AD于點(diǎn)M,作DE⊥y軸于點(diǎn)E.探究:是否存在這樣的點(diǎn)P,使四邊形PMEC是平行四邊形?若存在請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說明理由;
(3)在(2)的條件下,作PN⊥AD于點(diǎn)N,設(shè)△PMN的周長(zhǎng)為m,點(diǎn)P的橫坐標(biāo)為x,求m與x的函數(shù)關(guān)系式,并求出m的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

定義:把一個(gè)半圓與拋物線的一部分合成封閉圖形,我們把這個(gè)封閉圖形稱為“蛋圓”.如果一條直線與“蛋圓”只有一個(gè)交點(diǎn),那么這條直線叫做“蛋圓”的切線.如圖,A,B,C,D分別是“蛋圓”與坐標(biāo)軸的交點(diǎn),已知點(diǎn)D的坐標(biāo)為(0,8),AB為半圓的直徑,半圓的圓心M的坐標(biāo)為(1,0),半圓半徑為3.

(1)請(qǐng)你直接寫出“蛋圓”拋物線部分的解析式          ,自變量的取值范圍是          
(2)請(qǐng)你求出過點(diǎn)C的“蛋圓”切線與x軸的交點(diǎn)坐標(biāo);
(3)求經(jīng)過點(diǎn)D的“蛋圓”切線的解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:解答題

已知拋物線經(jīng)過(0,-1),(3,2)兩點(diǎn).求它的解析式及頂點(diǎn)坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

二次函數(shù)的最小值是(     )
A.1   B.-1  C.3 D.-3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:不詳 題型:單選題

如圖,在⊙O中,直徑AB=4,CD=,AB⊥CD于點(diǎn)E,點(diǎn)M為線段EA上一個(gè)動(dòng)點(diǎn),連接CM、DM,并延長(zhǎng)DM與弦AC交于點(diǎn)P,設(shè)線段CM的長(zhǎng)為x,△PMC的面積為y,則下列圖象中,能表示y與x的函數(shù)關(guān)系的圖象大致是(   )


A.              B.                 C.               D.

查看答案和解析>>

同步練習(xí)冊(cè)答案