【題目】Rt△ABC中,∠BAC=90°,AB=AC=2.以AC為一邊,在△ABC外部作等腰直角三角形ACD,則線段BD的長為 .
【答案】4或2 或
【解析】解:①以A為直角頂點(diǎn),向外作等腰直角三角形DAC,
∵∠DAC=90°,且AD=AC,
∴BD=BA+AD=2+2=4;
②以C為直角頂點(diǎn),向外作等腰直角三角形ACD,
連接BD,過點(diǎn)D作DE⊥BC,交BC的延長線于E.
∵△ABC是等腰直角三角形,∠ACD=90°,
∴∠DCE=45°,
又∵DE⊥CE,
∴∠DEC=90°,
∴∠CDE=45°,
∴CE=DE=2× = ,
在Rt△BAC中,BC= =2 ,
∴BD= = =2 ;
③以AC為斜邊,向外作等腰直角三角形ADC,
∵∠ADC=90°,AD=DC,且AC=2,
∴AD=DC=ACsin45°=2× = ,
又∵△ABC、△ADC是等腰直角三角形,
∴∠ACB=∠ACD=45°,
∴∠BCD=90°,
又∵在Rt△ABC中,BC= =2 ,
∴BD= = = .
故BD的長等于4或2 或 .
【考點(diǎn)精析】解答此題的關(guān)鍵在于理解勾股定理的概念的相關(guān)知識(shí),掌握直角三角形兩直角邊a、b的平方和等于斜邊c的平方,即;a2+b2=c2.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,△ABC與△DEC關(guān)于點(diǎn)C成中心對稱,連接AE、BD.
(1)線段AE、BD具有怎樣的位置關(guān)系和大小關(guān)系?說明你的理由.
(2)如果△ABC的面積為5cm2 , 求四邊形ABDE的面積.
(3)當(dāng)∠ACB為多少度時(shí),四邊形ABDE為矩形?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,高AD、BE相交于點(diǎn)H,BC=,在BE上截取BG=2,以GE為邊作等邊三角形GEF,則△ABH與△GEF重疊(陰影)部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AD∥BC,AB⊥BC,AB=3.點(diǎn)E為射線 BC上一個(gè)動(dòng)點(diǎn),連接AE,將△ABE沿AE折疊,點(diǎn)B落在點(diǎn)B′處,過點(diǎn)B′作AD的垂線,分別交AD,BC于點(diǎn)M,N.當(dāng)點(diǎn)B′為線段MN的三等分點(diǎn)時(shí),BE的長為__________ .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,長方形紙片ABCD,點(diǎn)E、F分別在邊AB、CD上,連接EF,將∠BEF對折,點(diǎn)B落在直線EF上的B′處,得到折痕EC,將點(diǎn)A落在直線EF上的點(diǎn)A′處,得到折痕EN.
(1)若∠BEB′=110°,則∠BEC=°,∠AEN=°,∠BEC+∠AEN=°.
(2)若∠BEB′=m°,則(1)中∠BEC+∠AEN的值是否改變?請說明你的理由.
(3)將∠ECF對折,點(diǎn)E剛好落在F處,且折痕與B′C重合,求∠DNA′.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀下面材料:
小偉遇到這樣一個(gè)問題:如圖1,在△ABC(其中∠BAC是一個(gè)可以變化的角)中,AB=2,AC=4,以BC為邊在BC的下方作等邊△PBC,求AP的最大值.
小偉是這樣思考的:利用變換和等邊三角形將邊的位置重新組合.他的方法是以點(diǎn)B為旋轉(zhuǎn)中心將△ABP逆時(shí)針旋轉(zhuǎn)60°得到△A′BC,連接A′A,當(dāng)點(diǎn)A落在A′C上時(shí),此題可解(如圖2).
(1)請你回答:AP的最大值是 .
(2)參考小偉同學(xué)思考問題的方法,解決下列問題:
如圖3,等腰Rt△ABC.邊AB=4,P為△ABC內(nèi)部一點(diǎn),請寫出求AP+BP+CP的最小值長的解題思路.
提示:要解決AP+BP+CP的最小值問題,可仿照題目給出的做法.把△ABP繞B點(diǎn)逆時(shí)針旋轉(zhuǎn)60,得到△A′BP′.
①請畫出旋轉(zhuǎn)后的圖形
②請寫出求AP+BP+CP的最小值的解題思路(結(jié)果可以不化簡).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】我區(qū)注重城市綠化提高市民生活質(zhì)量,新建林蔭公園計(jì)劃購買甲、乙兩種樹苗共800株,甲種樹苗每株12元,乙種樹苗每株15元.相關(guān)資料表明:甲、乙兩種樹苗的成活率分別為85%、90%.
(1)若購買這兩種樹苗共用去10500元,則甲、乙兩種樹苗各購買多少株?
(2)若要使這批樹苗的總成活率不低于88%,則甲種樹苗至多購買多少株?
(3)在(2)的條件下,應(yīng)如何選購樹苗,使購買樹苗的費(fèi)用最低?并求出最低費(fèi)用.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com