已知是某直角三角形內角中較大的銳角,是某五邊形的外角中的最大角,甲、乙、丙、丁

計算的結果依次為10°、15°、30°、35°,其中有正確的結果,則計算正確的是(   )                                                         

 A.甲             B.乙             C.丙              D.丁

 

【答案】

B

【解析】直角三角形內角中較大的銳角范圍加上五邊形的外角中的最大角范圍的和除以6即得的范圍,可知乙正確,故選B。

 

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料后回答問題:
在平面直角坐標系中,已知x軸上的兩點A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點,我們可以通過構造直角三角形來求A、B間的距離.
如圖,過A、B兩點分別向x軸、y軸作垂線AM1、AN1和BM2、BN2,垂足分別記作M1(x1,0),N1(0,y1)、M2(x2,0),N2(0,y2),直線AN1與BM2交于Q點.
在Rt△ABQ中,|AB|2=|AQ|2+|QB|2,∵|AQ|=|M1M2|=|x2-x1|,|BQ|=|N1N2|=|y2-y1|
∴|AB|2=|x2-x1|2+|y2-y1|2由此得任意兩點A(x1,y1),B(x2,y2)之間的距離公式:|AB|=
|x2-x1|2+|y2-y1|2

如果某圓的圓心為(0,0),半徑為r.設P(x,y)是圓上任一點,根據(jù)“圓上任一點到定點(圓心)的距離都等于定長(半徑)”,我們不難得到|PO|=r,即
(x-0)2+(y-0)2
=r
,整理得:x2+y2=r2.我們稱此式為圓心在精英家教網(wǎng)原點,半徑為r的圓的方程.
(1)直接應用平面內兩點間距離公式,求點A(1,-3),B(-2,1)之間的距離;
(2)如果圓心在點P(2,3),半徑為3,求此圓的方程.
(3)方程x2+y2-12x+8y+36=0是否是圓的方程?如果是,求出圓心坐標與半徑.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

學習了勾股定理的逆定理,我們知道:在一個三角形中,如果兩邊的平方和等于第三邊的平方,那么這個三角形為直角三角形.類似地,我們定義:對于任意的三角形,設其三個角的度數(shù)分別為x°、y°和z°,若滿足x2+y2=z2,則稱這個三角形為勾股三角形.
(1)根據(jù)“勾股三角形”的定義,請你直接判斷命題:“直角三角形是勾股三角形”是真命題還是假命題?
(2)已知某一勾股三角形的三個內角的度數(shù)從小到大依次為x°、y°和z°,且xy=2160,求x+y的值;
(3)如圖,△ABC內接于⊙O,AB=
6
,AC=1+
3
,BC=2,⊙O的直徑BE交AC于點D.
①求證:△ABC是勾股三角形;
②求DE的長.

查看答案和解析>>

科目:初中數(shù)學 來源:安徽省期末題 題型:解答題

閱讀下列材料后回答問題:
在平面直角坐標系中,已知x軸上的兩點A(x1,0),B(x2,0)的距離記作是平面上任意兩點,我們可以通過構造直角三角形來求A、B間的距離。
,過A、B兩點分別向x軸、y軸作垂線AM1、AN1和BM2、BN2,垂足分別記作
直線AN1與BM2交于Q點。
在Rt△ABQ中,

由此得任意兩點之間的距離公式:
如果某圓的圓心為(0,0),半徑為r。設P(x,y)是圓上任一點,根據(jù)“圓上任一點到定點(圓心)的距離都等于定長(半徑)”,我們不難得到|PO|=r,即:整理得:x2+y2=r2。我們稱此式為圓心在原點,半徑為r的圓的方程。
(1)直接應用平面內兩點間距離公式,求點之間的距離;
(2)如果圓心在點P(2,3),半徑為3,求此圓的方程。
(3)方程x2+y2-12x+8y+36=0是否是圓的方程?如果是,求出圓心坐標與半徑。

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:閱讀理解

閱讀下列材料后回答問題:

在平面直角坐標系中,已知x軸上的兩點A(X1,0),B(X2,0)的距離記作,如果是平面上任意兩點,我們可以通過構造直角三角形來求A、B間的距離。

如圖,過A、B兩點分別向x軸、y軸作垂線AM1、AN1和BM2、BN2,垂足分別記作,、,,直線AN1與BM2交于Q點。

在Rt△ABQ中,,∵,

由此得任意兩點之間的距離公式:

如果某圓的圓心為(0,0),半徑為r。設P(x,y)是圓上任一點,根據(jù)“圓上任一點到定點(圓心)的距離都等于定長(半徑)”,我們不難得到,即:,    整理得:。我們稱此式為圓心在原點,半徑為r的圓的方程。

(1)直接應用平面內兩點間距離公式,求點 之間的距離;

(2)如果圓心在點P(2,3),半徑為3,求此圓的方程。

(3)方程是否是圓的方程?如果是,求出圓心坐標與半徑。

查看答案和解析>>

科目:初中數(shù)學 來源:2009-2010學年安徽省亳州市蒙城縣渦南片19校聯(lián)考九年級(上)期末數(shù)學試卷(解析版) 題型:解答題

閱讀下列材料后回答問題:
在平面直角坐標系中,已知x軸上的兩點A(x1,0),B(x2,0)的距離記作|AB|=|x1-x2|,如果A(x1,y1),B(x2,y2)是平面上任意兩點,我們可以通過構造直角三角形來求A、B間的距離.
如圖,過A、B兩點分別向x軸、y軸作垂線AM1、AN1和BM2、BN2,垂足分別記作M1(x1,0),N1(0,y1)、M2(x2,0),N2(0,y2),直線AN1與BM2交于Q點.
在Rt△ABQ中,|AB|2=|AQ|2+|QB|2,∵|AQ|=|M1M2|=|x2-x1|,|BQ|=|N1N2|=|y2-y1|
∴|AB|2=|x2-x1|2+|y2-y1|2由此得任意兩點A(x1,y1),B(x2,y2)之間的距離公式:|AB|=
如果某圓的圓心為(0,0),半徑為r.設P(x,y)是圓上任一點,根據(jù)“圓上任一點到定點(圓心)的距離都等于定長(半徑)”,我們不難得到|PO|=r,即,整理得:x2+y2=r2.我們稱此式為圓心在原點,半徑為r的圓的方程.
(1)直接應用平面內兩點間距離公式,求點A(1,-3),B(-2,1)之間的距離;
(2)如果圓心在點P(2,3),半徑為3,求此圓的方程.
(3)方程x2+y2-12x+8y+36=0是否是圓的方程?如果是,求出圓心坐標與半徑.

查看答案和解析>>

同步練習冊答案