精英家教網 > 初中數學 > 題目詳情
(2003•泉州)如圖,△ABC中,∠BAC的平分線AD交BC于D,⊙O過點A,且和BC切于D,和AB、AC分別交于E、F.設EF交AD于G,連接DF.
(1)求證:EF∥BC;
(2)已知:DF=2,AG=3,求的值.

【答案】分析:(1)由切線的性質知∠4=∠2,再根據角平分線的性質及平行線的判定定理求出EF∥BC;
(2)因為EF∥BC,求出△ADF∽△FDG,根據其相似比即可解答.
解答:(1)證明:∵⊙O切BC于D,
∴∠4=∠2,
又∵∠1=∠3,∠1=∠2,
∴∠3=∠4,
∴EF∥BC;

(2)解:∵∠1=∠3,∠1=∠2,
∴∠2=∠3,
又∵∠5=∠5,
∴△ADF∽△FDG,
,
設GD=x,則
解得x1=1,x2=-4,經檢驗x1=1,x2=-4為所列方程的根,
∵x2=-4<0應舍去,
∴GD=1由(1)已證EF∥BC,

點評:主要考查的是相似三角形判定和性質的應用,切線的性質,以及解分式方程.
練習冊系列答案
相關習題

科目:初中數學 來源:2003年全國中考數學試題匯編《圖形的對稱》(02)(解析版) 題型:解答題

(2003•泉州)如圖,在直角坐標系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關于原點O的對稱點A2、B2(應保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2;
(3)設線段AB兩端點的坐標分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最?若存在,求出點C的坐標(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《三角形》(09)(解析版) 題型:解答題

(2003•泉州)如圖,在直角坐標系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關于原點O的對稱點A2、B2(應保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2;
(3)設線段AB兩端點的坐標分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最?若存在,求出點C的坐標(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2003年福建省泉州市中考數學試卷(解析版) 題型:解答題

(2003•泉州)如圖,在直角坐標系中,等腰梯形ABB1A1的對稱軸為y軸.
(1)請畫出:點A、B關于原點O的對稱點A2、B2(應保留畫圖痕跡,不必寫畫法,也不必證明);
(2)連接A1A2、B1B2(其中A2、B2為(1)中所畫的點),試證明:x軸垂直平分線段A1A2、B1B2;
(3)設線段AB兩端點的坐標分別為A(-2,4)、B(-4,2),連接(1)中A2B2,試問在x軸上是否存在點C,使△A1B1C與△A2B2C的周長之和最小?若存在,求出點C的坐標(不必說明周長之和最小的理由);若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《銳角三角函數》(05)(解析版) 題型:解答題

(2003•泉州)如圖,在離鐵塔93米的A處,用測角器測得塔頂的仰角為∠BAF,已知測角器高AD=1.55米,請你解答以下兩小題中的任意一個小題(若兩個小題都做,按第(1)小題評分).
(1)若∠BAF=31°,求鐵塔高BE(精確到0.01米).
(2)若∠BAF=30°,求鐵塔高BE(精確到0.01米),提供參考數據:≈1.414,≈1.732)

查看答案和解析>>

科目:初中數學 來源:2003年全國中考數學試題匯編《三角形》(06)(解析版) 題型:解答題

(2003•泉州)如圖,已知:AC=AD,BC=BD,
求證:∠1=∠2.

查看答案和解析>>

同步練習冊答案