如圖,點(diǎn)A、點(diǎn)B分別在反比例函數(shù)數(shù)學(xué)公式(x<0)和數(shù)學(xué)公式(x>0)的圖象上,∠AOB恰好被y軸平分,若△OAB的面積為4,則k的值為_(kāi)_______.

16
分析:過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,BF⊥x軸于點(diǎn)F,根據(jù)∠AOB恰好被y軸平分,可判定△AOE∽△BOF,根據(jù)相似三角形的面積比等于相似比平方,可得出點(diǎn)A及點(diǎn)B坐標(biāo)的關(guān)系,再由S梯形AEFB=(AE+BF)×EF=S△AEO+S△BOF+S△AOB,可得出方程,解出即可得出k的值.
解答:過(guò)點(diǎn)A作AE⊥x軸于點(diǎn)E,BF⊥x軸于點(diǎn)F,

∵∠AOB恰好被y軸平分,
∴∠AOC=∠BOC,
∵∠ACO=∠OAE,∠OBF=∠BOC,
∴∠OAE=∠OBF,
∴△AOE∽△BOF,
∴(2==(相似三角形的面積比等于相似比平方),
=
設(shè)點(diǎn)B的坐標(biāo)為(a,),則點(diǎn)A的坐標(biāo)為(-a,),
S梯形AEFB=(AE+BF)×EF=×(+)×(a+a)=S△AEO+S△BOF+S△AOB=++4,
整理得:=4,
(x>0),在第一象限,
∴k>0,
∴k=16.
故答案為:16.
點(diǎn)評(píng):本題考查了反比例函數(shù)的綜合題,涉及了反比例函數(shù)k的幾何意義、梯形及相似三角形的判定與性質(zhì),綜合考察的知識(shí)點(diǎn)較多,注意數(shù)形結(jié)合思想的運(yùn)用,將各個(gè)知識(shí)點(diǎn)融會(huì)貫通.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,點(diǎn)A,B是⊙O上兩點(diǎn),AB=10,點(diǎn)P是⊙O上的動(dòng)點(diǎn)(P與A,B不重合)連接AP,PB,過(guò)點(diǎn)O分別作OE⊥AP于點(diǎn)E,OF⊥PB于點(diǎn)F,則下列結(jié)論正確的是( 。
A、EF=2.5
B、EF=
10
3
C、EF=5
D、EF的長(zhǎng)度無(wú)法確定

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)y=ax2的圖象與一次函數(shù)y=x+b的圖象相交于A(-2,2)、B兩點(diǎn),從點(diǎn)A和點(diǎn)B分別引平行于y軸的直線與x軸分別交于C,D兩點(diǎn),點(diǎn)P(t,0),為線段CD上的動(dòng)精英家教網(wǎng)點(diǎn),過(guò)點(diǎn)P且平行于y軸的直線與拋物線和直線分別交于R,S.
(1)求一次函數(shù)和二次函數(shù)的解析式,并求出點(diǎn)B的坐標(biāo);
(2)當(dāng)SR=2RP時(shí),計(jì)算線段SR的長(zhǎng);
(3)若線段BD上有一動(dòng)點(diǎn)Q且其縱坐標(biāo)為t+3,問(wèn)是否存在t的值,使S△BRQ=15?若存在,求t的值;若不存在,說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,二次函數(shù)y=
3
2
x2+bx+c
的圖象與x軸交于A(-1,0)、B(3,0)兩點(diǎn),頂點(diǎn)為C.

(1)求此二次函數(shù)解析式;
(2)點(diǎn)D為點(diǎn)C關(guān)于x軸的對(duì)稱點(diǎn),過(guò)點(diǎn)A作直線l:y=
3
3
x+
3
3
交BD于點(diǎn)E,過(guò)點(diǎn)B作直線BK∥AD交直線l于K點(diǎn).問(wèn):在四邊形ABKD的內(nèi)部是否存在點(diǎn)P,使得它到四邊形ABKD四邊的距離都相等?若存在,請(qǐng)求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由;
(3)在(2)的條件下,若M、N分別為直線AD和直線l上的兩個(gè)動(dòng)點(diǎn),連結(jié)DN、NM、MK,求DN+NM+MK和的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2013•普陀區(qū)模擬)如圖,在平面直角坐標(biāo)系中,矩形OABC的兩邊OA、OC分別在x軸、y軸的正半軸上,OA=4,OC=2.點(diǎn)P從點(diǎn)O出發(fā),沿x軸以每秒1個(gè)單位長(zhǎng)的速度向點(diǎn)A勻速運(yùn)動(dòng),當(dāng)點(diǎn)P到達(dá)點(diǎn)A時(shí)停止運(yùn)動(dòng),設(shè)點(diǎn)P運(yùn)動(dòng)的時(shí)間是t秒.將線段CP的中點(diǎn)繞點(diǎn)P按順時(shí)針?lè)较蛐D(zhuǎn)90°得點(diǎn)D,點(diǎn)D隨點(diǎn)P的運(yùn)動(dòng)而運(yùn)動(dòng),連接DP、DA.則:
(1)當(dāng)t=
2秒或3秒
2秒或3秒
時(shí),△DPA為直角三角形;
(2)點(diǎn)D的運(yùn)動(dòng)路線總長(zhǎng)為
2
5
2
5

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,已知△ABC中,AB=AC=12cm,BC=10cm,點(diǎn)D為AB的中點(diǎn).如果點(diǎn)P在線段BC上以2cm/s的速度由點(diǎn)B向C點(diǎn)運(yùn)動(dòng),同時(shí),點(diǎn)Q在線段AC 上由點(diǎn)A向C點(diǎn)以4cm/s的速度運(yùn)動(dòng).
(1)若點(diǎn)P、Q兩點(diǎn)分別從B、A 兩點(diǎn)同時(shí)出發(fā),經(jīng)過(guò)2秒后,△BPD與△CQP是否全等,請(qǐng)說(shuō)明理由;
(2)若點(diǎn)P、Q兩點(diǎn)分別從B、A 兩點(diǎn)同時(shí)出發(fā),△CPQ的周長(zhǎng)為18cm,問(wèn):經(jīng)過(guò)幾秒后,△CPQ是等腰三角形?

查看答案和解析>>

同步練習(xí)冊(cè)答案