【題目】如圖所示,在平面直角坐標(biāo)系中有四邊形ABCD.
(1)寫出四邊形ABCD的頂點(diǎn)坐標(biāo);
(2)求線段AB的長;
(3)求四邊形ABCD的面積.
【答案】(1)A(1,0);B(5,0);C(3,3);D(2,4);(2)4;(3)8.5.
【解析】
(1)根據(jù)圖形,可以直接寫出四邊形ABCD的頂點(diǎn)坐標(biāo);
(2)根據(jù)點(diǎn)A和點(diǎn)B的坐標(biāo)可以得到線段AB的長;
(3)根據(jù)圖象中各點(diǎn)的坐標(biāo),可以求得四邊形ABCD的面積.
(1)由圖可得,
點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(5,0),點(diǎn)C的坐標(biāo)為(3,3),點(diǎn)D的坐標(biāo)為(2,4);
(2)∵點(diǎn)A的坐標(biāo)為(1,0),點(diǎn)B的坐標(biāo)為(5,0),
∴AB=5-1=4;
(3)連接DE、CE,
則四邊形ABCD的面積=S△ADE+S△DCE+S△CEB=.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】探究題:已知:如圖,,.求證:.
老師要求學(xué)生在完成這道教材上的題目證明后,嘗試對圖形進(jìn)行變形,繼續(xù)做拓展探究,看看有什么新發(fā)現(xiàn)?
(1)小穎首先完成了對這道題的證明,在證明過程中她用到了平行線的一條性質(zhì),小穎用到的平行線性質(zhì)可能是 .
(2)接下來,小穎用《幾何畫板》對圖形進(jìn)行了變式,她先畫了兩條平行線,然后在平行線間畫了一點(diǎn),連接后,用鼠標(biāo)拖動點(diǎn),分別得到了圖,小穎發(fā)現(xiàn)圖正是上面題目的原型,于是她由上題的結(jié)論猜想到圖和圖中的與之間也可能存在著某種數(shù)量關(guān)系.于是她利用《幾何畫板》的度量與計(jì)算功能,找到了這三個(gè)角之間的數(shù)量關(guān)系.
請你在小穎操作探究的基礎(chǔ)上,繼續(xù)完成下面的問題:
(。┎孪雸D中與之間的數(shù)量關(guān)系并加以證明;
(ⅱ)補(bǔ)全圖,直接寫出與之間的數(shù)量關(guān)系: .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】出租車司機(jī)小王某天下午營運(yùn)是在東西走向的大街上進(jìn)行的,如果規(guī)定向東為正,向西為負(fù),他這天下午行車?yán)锍?單位:千米)如下:
+15,-2,+5,-1,+10,-3,-2,+12,+4,-5,+6.
(1)將最后一名乘客送到目的地時(shí),小王距下午出車時(shí)的出發(fā)點(diǎn)多遠(yuǎn)?
(2)若汽車耗油量為0.05升/千米,這天下午小王的汽車共耗油多少升?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,直線l1∥l2∥l3,一等腰直角三角形ABC的三個(gè)頂點(diǎn)A、B、C分別在l1、l2、l3上,AC交l2于D,∠ACB=90°.已知l1與l2的距離為2,l2與l3的距離為6,則的值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是等邊三角形,BC=2.點(diǎn)P從點(diǎn)A出發(fā)沿沿射線AB以1的速度運(yùn)動,過點(diǎn)P作PE∥BC交射線AC于點(diǎn)E,同時(shí)點(diǎn)Q從點(diǎn)C出發(fā)沿BC的延長線以1的速度運(yùn)動,連結(jié)BE、EQ.設(shè)點(diǎn)P的運(yùn)動時(shí)間為t().
(1)求證:△APE是等邊三角形;
(2)直接寫出CE的長(用含的代數(shù)式表示);
(3)當(dāng)點(diǎn)P在邊AB上,且不與點(diǎn)A、B重合時(shí),求證:△BPE≌△ECQ.
(4)在不添加字母和連結(jié)其它線段的條件下,當(dāng)圖中等腰三角形的個(gè)數(shù)大于3時(shí),直接寫出t的值和對應(yīng)的等腰三角形的個(gè)數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖E、F分別在正方形ABCD的邊BC、CD上,且∠EAF=45°.
(1)求證:EF=BE+DF;
(2)若線段EF、AB的長分別是方程x2﹣5x+6=0的兩個(gè)根,求△AEF的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】等腰三角形一腰上的高與另一腰的夾角為 45°,則這個(gè)等腰三角形的底角為( )
A.67°B.67.5°C.22.5°D.67.5°或 22.5°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】黃岡某地“杜鵑節(jié)”期間,某公司70名職工組團(tuán)前往參觀欣賞,旅游景點(diǎn)規(guī)定:①門票每人60元,無優(yōu)惠;②上山游玩可坐景點(diǎn)觀光車,觀光車有四座和十一座車,四座車每輛60元,十一座車每人10元.公司職工正好坐滿每輛車且總費(fèi)用不超過5000元,問公司租用的四座車和十一座車各多少輛?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)A、B、C、D的坐標(biāo)分別是(1,7),(1,1),(4,1),(6,1),以C、D、E為頂點(diǎn)的三角形與△ABC相似,則點(diǎn)E的坐標(biāo)不可能是( )
A.(4,2) B.(6,0) C.(6,3) D.(6,5)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com