【題目】如圖E、F分別在正方形ABCD的邊BC、CD上,且∠EAF=45°.

(1)求證:EF=BE+DF;

(2)若線段EF、AB的長分別是方程x2﹣5x+6=0的兩個根,求△AEF的面積.

【答案】(1)證明見解析;(2)3

【解析】試題分析:(1)延長CB到G,使GB=DF,連接AG,求證△ABG≌△ADF,得∠3=∠2,AG=AF,進而求證△AGE≌△AFE,可得GB+BE=EF,所以DF+BE=EF;

(2)解方程求得EF、AB的長,由SAEF=SAGE ,通過計算即可得.

試題解析:(1)延長CBG,使GB=DF,連接AG(如圖),

AB=AD,∠ABG=∠D=90°,GB=DF,∴△ABG≌△ADF(SAS),

∴∠3=∠2,AG=AF,

∵∠BAD=90°,∠EAF=45°,

∴∠1+∠2=45°,∴∠GAE=∠1+∠3=45°=∠EAF,

AE=AE,∠GAE=∠EAFAG=AF,

∴△AGE≌△AFE(SAS),

GB+BE=EF,∴EF= BE + DF.

(2)∵x2-5x+6=0,∴x1= 2,x2= 3,

SAEF=SAGE=.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】解方程組:(1(用代入消元法);(2(用加減消元法)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】材料:在學習絕對值時,老師教過我們絕對值的幾何含義,表示、在數(shù)軸上對應的兩點之間的距離;,所以表示、在數(shù)軸上對應的兩點之間的距離;,所以表示在數(shù)軸上對應的點到原點的距離,一般地,點、在數(shù)軸上分別表示有理數(shù),那么、之間的距離可表示為

)點、在數(shù)軸上分別表示有理數(shù)、、,那么的距離表示為______________________________(用含絕對值的式子表示).如果,那么______________________________

)利用數(shù)軸探究:

①找出滿足的所有整數(shù)值是____________________

②設,當的值取在不小于且不大于的范圍時,的值是不變的,而且是的最小值,這個最小值是____________________;

)求的最小值為____________________,此時的值為____________________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】一天,小明和小紅玩紙片拼圖游戲.發(fā)現(xiàn)利用圖①中的三種材料各若干可以拼出一些圖形來解釋某些等式,比如圖②可以解釋為:(a+2b)(a+b)=a2+3ab+2b2

1)圖③可以解釋為等式:    

2)圖④中陰影部分的面積為    .觀察圖④請你寫出(a+b)2、(ab)2ab之間的等量關系是    

3)如圖⑤,小明利用7個長為b,寬為a的長方形拼成如圖所示的大長方形;若AB=4,若長方形AGMB的面積與長方形EDHN的面積的差為S,試計算S的值(用含a,b的代數(shù)式表示)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖所示,在平面直角坐標系中有四邊形ABCD.

1)寫出四邊形ABCD的頂點坐標;

2)求線段AB的長;

3)求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某商場在去年底以每件80元的進價購進一批同型號的服裝,一月份以每件150元的售價銷售了320件,二、三月份該服裝暢銷,銷量持續(xù)走高,在售價不變的情況下,三月底統(tǒng)計知三月份的銷量達到了500件.

1)求二、三月份服裝銷售量的平均月增長率;

2)從四月份起商場因換季清倉采用降價促銷的方式,經(jīng)調(diào)查發(fā)現(xiàn),在三月份銷量的基礎上,該服裝售價每降價5元,月銷售量增加10件,當每件降價多少元時,四月份可獲利12000元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖(十九),用四個螺絲將四條不可彎曲的木條圍成一個木框,不計螺絲大小,其中相鄰兩螺絲的距離依序為2、3、46,且相鄰兩木條的夾角均可調(diào)整。若調(diào)整木條的夾角時不破壞此木框,則任兩螺絲的距離之最大值為何?

(A) 5 (B) 6 (C) 7 (D) 10

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】△ABC中,∠BAC=90°,AB=AC,點D為直線BC上一動點(點D不與B,C重合),以AD為邊在AD右側(cè)作正方形ADEF,連接CF.

(1)觀察猜想

如圖1,當點D在線段BC上時,

①BC與CF的位置關系為:   

②BC,CD,CF之間的數(shù)量關系為:   ;(將結論直接寫在橫線上)

(2)數(shù)學思考

如圖2,當點D在線段CB的延長線上時,結論①,②是否仍然成立?若成立,請給予證明;若不成立,請你寫出正確結論再給予證明.

(3)拓展延伸

如圖3,當點D在線段BC的延長線上時,延長BA交CF于點G,連接GE.若已知AB=2,CD=BC,請求出GE的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】近幾年來,國家對購買新能源汽車實行補助政策,2016年某省對新能源汽車中的“插電式混合動力汽車”(用D表示)實行每輛3萬元的補助,小劉對該省2016年上半年“純電動乘用車”(有三種類型分別用A、B、C表示)和“插電式混合動力汽車”的銷售計劃進行了研究,繪制出如圖所示的兩幅不完整的統(tǒng)計圖.

(1)補全條形統(tǒng)計圖;

(2)求出“D”所在扇形的圓心角的度數(shù);

(3)為進一步落實該政策,該省計劃再補助4.5千萬元用于推廣上述兩大類產(chǎn)品,請你預測,該省16年計劃大約共銷售“插電式混合動力汽車”多少輛?

查看答案和解析>>

同步練習冊答案