【題目】已知:如圖,矩形ABCD中,點(diǎn)E、F分別在DC,AB邊上,且點(diǎn)A、F、C在以點(diǎn)E為圓心,EC為半徑的圓上,連接CF,作EG⊥CF于G,交AC于H.已知AB=6,設(shè)BC=x,AF=y(tǒng).
(1)求證:∠CAB=∠CEG;
(2)①求y與x之間的函數(shù)關(guān)系式. ②x= 時(shí),點(diǎn)F是AB的中點(diǎn);
(3)當(dāng)x為何值時(shí),點(diǎn)F是的中點(diǎn),以A、E、C、F為頂點(diǎn)的四邊形是何種特殊四邊形?試說(shuō)明理由.
【答案】(1)證明見(jiàn)解析(2)①y=﹣x2+6②3(3)2
【解析】
(1)連接EF,由于EG經(jīng)過(guò)圓心E,且與弦CF垂直,由垂徑定理知∠CEF=2∠CEG,而圓周角∠CAF和圓心角∠CEG所對(duì)的弧正好相同,由圓周角定理知∠CEG=2∠CAF,由此得證;
(2)①設(shè)⊙O的半徑為r,連接EA、EF;由于EA=EF,那么E點(diǎn)在AF的垂直平分線上,因此AF=2DE,即y=2(6﹣r),所以只需求出r、x的關(guān)系式即可;Rt△ADE中,AD=x,用r可表示出AE、DE的長(zhǎng),即可由勾股定理求得r、x的關(guān)系式,由此得解;②當(dāng)F是AB中點(diǎn)時(shí),AF=y(tǒng)=3,將其代入①的函數(shù)關(guān)系式中,即可求得x的值;
(3)當(dāng)F是弧AC的中點(diǎn)時(shí),EF垂直平分AC,可得AE=EC,AF=FC;易知∠AEF=∠CEF,而∠CEF和∠AFE是平行線的內(nèi)錯(cuò)角,等量代換后可得∠AEF=∠AFE=∠FAE,由此可證得△EAF是正三角形,由此可證得四邊形AECF的四邊都相等,即四邊形AECF是菱形;此時(shí)∠CFB=∠EAF=60°,在Rt△CFB中,易知BF=CF,而AF=FC,那么BF即為AF的一半、AB的三分之一,由此可求得BF的長(zhǎng),進(jìn)而可得到BC(即x)的長(zhǎng).
(1)連接EF(如圖1),
∵點(diǎn)A、F、C在以點(diǎn)E為圓心,EC為半徑的圓上,
∴EF=EC,
∵EG⊥CF,
∴∠CEF=2∠CEG,
∵∠CEF=2∠CAB,∴∠CAB=∠CEG;
(2)(如圖2)①連接EF、EA,
設(shè)⊙E的半徑為r,
在Rt△ADE中,EA=r,DE=6﹣r,AD=x,
∴x2+(6﹣r)2=r2,r=x2+3,
∵EF=EA,
∴AF=2DE,
即y=2(6﹣r)=﹣x2+6;
②點(diǎn)F是AB的中點(diǎn)時(shí),y=3,即﹣x2+6=3,
∴x=;
(3)(如圖3)
當(dāng)x=時(shí),F是弧AC的中點(diǎn).此時(shí)四邊形AECF菱形;
理由如下:
∵點(diǎn)F是弧AC的中點(diǎn),
∴∠AEF=∠CEF,AF=CF,
∵AB∥CD,
∴∠AFE=∠CEF,
∴∠AEF=∠AFE,
∴AE=AF,
∵AE=EF,
∴AE=AF=CE=CF,
∴△AEF和△CEF都是正三角形,
∴四邊形AECF是菱形,且∠CEF=60°,
∴∠BCF=30°,∴BF=CF=AF=AB=2,BC=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】2016年12月底我國(guó)首艘航空母艦遼寧艦與數(shù)艘去驅(qū)航艦組成編隊(duì),攜多架殲﹣15艦載戰(zhàn)斗機(jī)和多型艦載直升機(jī)開(kāi)展跨海區(qū)訓(xùn)練和試驗(yàn)任務(wù),在某次演習(xí)中,預(yù)警直升機(jī)A發(fā)現(xiàn)在其北偏東60°,距離160千米處有一可疑目標(biāo)B,預(yù)警直升機(jī)立即向位于南偏西30°距離40千米處的航母C報(bào)告,航母艦載戰(zhàn)斗機(jī)立即升空沿北偏東53°方向向可疑目標(biāo)飛去,請(qǐng)求出艦載戰(zhàn)斗機(jī)到達(dá)目標(biāo)的航程BC.
(結(jié)果保留整數(shù),參考數(shù)據(jù):sin53°≈0.8,cos53°≈0.6,tan53°≈1.3, ≈1.73)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對(duì)角線BD折疊,使點(diǎn)C落在點(diǎn)E處,BE與AD交于點(diǎn)F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復(fù)原狀,點(diǎn)F與BC邊上的點(diǎn)M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,BD為△ABC外接圓⊙O的直徑,且∠BAE=∠C.
(1)求證:AE與⊙O相切于點(diǎn)A;
(2)若AE∥BC,BC=2,AC=2,求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,△ABC的位置如圖所示(每個(gè)小方格都是邊長(zhǎng)為1個(gè)單位長(zhǎng)度的正方形).
(1)若△ABC和△A1B1C1關(guān)于原點(diǎn)O成中心對(duì)稱圖形,畫(huà)出△A1B1C1;
(2)將△ABC繞著點(diǎn)A順時(shí)針旋轉(zhuǎn)90°,畫(huà)出旋轉(zhuǎn)后得到的△AB2C2;
(3)在x軸上存在一點(diǎn)P,滿足點(diǎn)P到點(diǎn)B1與點(diǎn)C1距離之和最小,請(qǐng)直接寫(xiě)出P B1+ P C1的最小值為_(kāi)_________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知梯形ABCD中,AD∥BC,AB=CD=AD,AC、BD相交于點(diǎn)O,∠BCD=60°,則下列4個(gè)結(jié)論:①梯形ABCD是軸對(duì)稱圖形;②BC=2AD;③梯形ABCD是中心對(duì)稱圖形;④AC平分∠DCB,其中正確的是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形ABCD內(nèi)有一點(diǎn)P,若PA=1,PB=2,PC=3.
(1)畫(huà)出△ABP繞點(diǎn)B順時(shí)針旋轉(zhuǎn)90°得到的△CBE;
(2)求∠APB度數(shù);
(3)求正方形ABCD的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角體系中,直線AB交x軸于點(diǎn)A(5,0),交y軸于點(diǎn)B,AO是⊙M的直徑,其半圓交AB于點(diǎn)C,且AC=3。取BO的中點(diǎn)D,連接CD、MD和OC。
(1)求證:CD是⊙M的切線;
(2)二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D、M、A,其對(duì)稱軸上有一動(dòng)點(diǎn)P,連接PD、PM,求△PDM的周長(zhǎng)最小時(shí)點(diǎn)P的坐標(biāo);
(3)在(2)的條件下,當(dāng)△PDM的周長(zhǎng)最小時(shí),拋物線上是否存在點(diǎn)Q,使?若存在,求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知在中,,,點(diǎn)在上,且.
當(dāng)點(diǎn)為線段的中點(diǎn),點(diǎn)、分別在線段、上時(shí)(如圖).過(guò)點(diǎn)作于點(diǎn),請(qǐng)?zhí)剿?/span>與之間的數(shù)量關(guān)系,并說(shuō)明理由;
當(dāng),
①點(diǎn)、分別在線段、上,如圖時(shí),請(qǐng)寫(xiě)出線段、之間的數(shù)量關(guān)系,并給予證明.
②當(dāng)點(diǎn)、分別在線段、的延長(zhǎng)線上,如圖時(shí),請(qǐng)判斷①中線段、之間的數(shù)量關(guān)系是否還存在.(直接寫(xiě)出答案,不用證明)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com