【題目】如圖,已知直線AB及直線AB外一點(diǎn)P,按下列要求完成畫圖和解答:1)連接PA,PB,用量角器畫出∠APB的平分線PCAB于點(diǎn)C;

2)過點(diǎn)PPDAB于點(diǎn)D

3)用刻度尺取AB中點(diǎn)E,連接PE

4)根據(jù)圖形回答點(diǎn)P到直線AB的距離是線段 的長(zhǎng)度

【答案】(1)答案見解析;(2)答案見解析;(3)答案見解析;(4)PD.

【解析】試題分析:(1)、用量角器量出∠APB的度數(shù),然后求出一半的度數(shù)得出答案;(2)、根據(jù)垂線的作法得出答案;(3)、用刻度尺量出AB的長(zhǎng)度,然后找出中點(diǎn),從而得出答案;(4)、點(diǎn)到直線的距離是指點(diǎn)到直線垂線段的長(zhǎng)度.

試題解析:(1)、如圖所示;(2)、如圖所示;(3)、如圖所示;

(4)、PD.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線與x軸交于A(-1,0)B(3,0)兩點(diǎn),與y軸交于點(diǎn)C(0,3).

1)求該拋物線所對(duì)應(yīng)的函數(shù)關(guān)系式;

(2)設(shè)拋物線上的一個(gè)動(dòng)點(diǎn)P的橫坐標(biāo)為t0t3過點(diǎn)PPDBC于點(diǎn)D.求線段PD的長(zhǎng)的最大值;② 當(dāng)BD=2CD時(shí),求t的值;

3)若點(diǎn)Q是拋物線的對(duì)稱軸上的動(dòng)點(diǎn),拋物線上存在點(diǎn)M,使得以B、C、Q、M為頂點(diǎn)的四邊形為平行四邊形,請(qǐng)求出所有滿足條件的點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2的平方等于(  )

A.±4B.2C.4D.4

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象與坐標(biāo)軸交于A、B、C三點(diǎn),其中點(diǎn)A的坐標(biāo)為(0,8),點(diǎn)B的坐標(biāo)為(﹣4,0).

(1)求該二次函數(shù)的表達(dá)式及點(diǎn)C的坐標(biāo);

(2)點(diǎn)D的坐標(biāo)為(0,4),點(diǎn)F為該二次函數(shù)在第一象限內(nèi)圖象上的動(dòng)點(diǎn),連接CD、CF,以CD、CF為鄰邊作平行四邊形CDEF,設(shè)平行四邊形CDEF的面積為S.

①求S的最大值;

②在點(diǎn)F的運(yùn)動(dòng)過程中,當(dāng)點(diǎn)E落在該二次函數(shù)圖象上時(shí),請(qǐng)直接寫出此時(shí)S的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:|2|1)0____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【題目】如圖所示的105的數(shù)陣,是由一些連續(xù)奇數(shù)組成的,形如圖框中的四個(gè)數(shù),設(shè)第一行的第一個(gè)數(shù)為

1用含的式子表示另外三個(gè)數(shù);

2若這樣框中的四個(gè)數(shù)的和是200,求出這四個(gè)數(shù);

3是否存在這樣的四個(gè)數(shù),它們的和為246?為什么?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,在ABCD中,E,F(xiàn)分別是邊AD,BC上的點(diǎn),且AE=CF,直線EF分別交BA的延長(zhǎng)線、DC的延長(zhǎng)線于點(diǎn)G,H,交BD于點(diǎn)O.

(1)求證:△ABE≌△CDF;

(2)連接DG,若DG=BG,則四邊形BEDF是什么特殊四邊形?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形的長(zhǎng)為4,寬為a(a<4),剪去一個(gè)邊長(zhǎng)最大的正方形后剩下一個(gè)矩形,同樣的方法操作,在剩下的矩形中再剪去一個(gè)最大的正方形,若剪去三個(gè)正方形后,剩下的恰好是一個(gè)正方形,則最后一個(gè)正方形的邊長(zhǎng)是________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著科技的不斷發(fā)展,人與人的溝通方式也發(fā)生了很大的變化,廣州市某中學(xué)2015屆九年級(jí)的一個(gè)數(shù)學(xué)興趣小組在本年級(jí)學(xué)生中進(jìn)行“學(xué)生最常用的交流方式”的專題調(diào)查活動(dòng),采取隨機(jī)抽樣的方式進(jìn)行問卷調(diào)查,問卷調(diào)查的結(jié)果分為四類:A.面對(duì)面交談;B.微信和QQ等聊天軟件交流;C.短信與書信交流;D.電話交流.根據(jù)調(diào)查數(shù)據(jù)結(jié)果繪制成以下兩幅不完整的統(tǒng)計(jì)圖

(1)本次調(diào)查,一共調(diào)查了 名同學(xué),其中C類女生有 名,D類男生有 名;

(2)若該年級(jí)有學(xué)生150名,請(qǐng)根據(jù)調(diào)查結(jié)果估計(jì)這些學(xué)生中以“D.電話交流”為最常用的交流方式的人數(shù)約為多少?

(3)在本次調(diào)查中以“C.短信與書信交流”為最常用交流方式的幾位同學(xué)中隨機(jī)抽取兩名同學(xué)參加廣州市中學(xué)生書信節(jié)比賽,請(qǐng)用列舉法求所抽取的兩名同學(xué)都是男同學(xué)的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案