【題目】小明從二次函數(shù)y=ax2+bx+c的圖像(如圖)中得出了下面的六條信息:①a<0;②c=0;③函數(shù)的最小值為-3;④二次函數(shù)y=ax2+bx+c的圖像與x軸交于點(diǎn)(0,0),(2.5,0);⑤當(dāng)0<x1<x2<2時(shí),y1<y2;⑥對(duì)稱軸是直線x=2.你認(rèn)為其中正確的是________(填序號(hào)).
【答案】②③⑥
【解析】
拋物線開口向上,可判斷①;拋物線過原點(diǎn),可判斷②;由圖像可知函數(shù)最小值,可判斷③;由拋物線對(duì)稱軸以及其與x軸的一個(gè)交點(diǎn)可求解拋物線與x軸的另一個(gè)交點(diǎn),可判斷④;當(dāng)x<2時(shí),函數(shù)值隨x的增大而減小,可判斷⑤;由圖像可知對(duì)稱軸,可判斷⑥.
解:拋物線開口向上,a>0,故①錯(cuò)誤;拋物線過原點(diǎn),則c=0,故②正確;由圖像可知函數(shù)最小值為-3,故③正確;拋物線對(duì)稱軸為x=2,其與x軸的一個(gè)交點(diǎn)為(0,0),則可求出拋物線與x軸的另一個(gè)交點(diǎn)為(4,0),故④錯(cuò)誤;當(dāng)x<2時(shí),函數(shù)值隨x的增大而減小,當(dāng)0<x1<x2<2時(shí),y1>y2,故⑤錯(cuò)誤;由圖像可知對(duì)稱軸為x=2,故⑥正確.
故其中正確的是:②③⑥.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠ABC=72°.
(1)用直尺和圓規(guī)作∠ABC的平分線BD交AC于點(diǎn)D(保留作圖痕跡,不要求寫作法);
(2)在(1)中作出∠ABC的平分線BD后,求∠BDC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)y=ax2+bc+c的圖象如圖所示,則下列判斷中錯(cuò)誤的是( 。
A. 圖象的對(duì)稱軸是直線x=﹣1 B. 當(dāng)x>﹣1時(shí),y隨x的增大而減小
C. 當(dāng)﹣3<x<1時(shí),y<0 D. 一元二次方程ax2+bx+c=0的兩個(gè)根是﹣3,1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的圖象如圖所示,對(duì)稱軸是直線,下列結(jié)論:①;②;③;④.正確的是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,拋物線經(jīng)過點(diǎn),且與軸交于,兩點(diǎn),與軸交于點(diǎn),連接,,.
該拋物線的解析式;
如圖,點(diǎn)是所求拋物線上的一個(gè)動(dòng)點(diǎn),過點(diǎn)作軸的垂線,分別交軸于點(diǎn),交直線于點(diǎn),設(shè)點(diǎn)的橫坐標(biāo)為,當(dāng)時(shí),過點(diǎn)作,交軸于點(diǎn),連接,則為何值時(shí),的面積取得最大值,并求出這個(gè)最大.
如圖,中,,,,直角邊在軸上,且與重合,當(dāng)沿軸從右向左以每秒個(gè)單位長度的速度移動(dòng)時(shí),設(shè)與重疊部分的面積為,求當(dāng)時(shí),移動(dòng)的時(shí)間.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】對(duì)于一個(gè)關(guān)于的代數(shù)式,若存在一個(gè)系數(shù)為正數(shù)關(guān)于的單項(xiàng)式,使 的結(jié)果是所有系數(shù)均為整數(shù)的整式,則稱單項(xiàng)式為代數(shù)式的“整系單項(xiàng)式” ,例如:
當(dāng) 時(shí),由于 ,故是的整系單項(xiàng)式;
當(dāng) 時(shí),由于 ,故是的整系單項(xiàng)式;
當(dāng) 時(shí),由于 ,故是的整系單項(xiàng)式;
當(dāng) 時(shí),由于 ,故是的整系單項(xiàng)式;
顯然,當(dāng)代數(shù)式存在整系單項(xiàng)式時(shí),有無數(shù)個(gè),現(xiàn)把次數(shù)最低,系數(shù)最小的整系單項(xiàng)式記為 ,例如: .
閱讀以上材料并解決下列問題:
⑴.判斷:當(dāng) 時(shí), 的整系單項(xiàng)式(填“是”或“不是”);
⑵.當(dāng) 時(shí), = ;
⑶.解方程:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩個(gè)工程隊(duì)同時(shí)參與一項(xiàng)工程建設(shè),共同施工15天完成該項(xiàng)工程的,乙隊(duì)另有任務(wù)調(diào)走,甲隊(duì)又單獨(dú)施工30天完成了剩余的工程.
(1)若乙隊(duì)單獨(dú)施工,需要多少天才能完成該項(xiàng)工程?
(2)若乙隊(duì)參與該項(xiàng)工程施工的時(shí)間不超過13天,則甲隊(duì)至少施工多少天才能完成該項(xiàng)工程?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線y=x﹣2分別交x、y軸于C、A,物線y=﹣x2+x﹣2經(jīng)過A、C兩點(diǎn),交x軸于另外一點(diǎn)B.點(diǎn)E為線段AC上一點(diǎn),點(diǎn)F為線段AC延長線一點(diǎn),AE=CF,點(diǎn)P為AC上方拋物線上的一點(diǎn),當(dāng)△PEF是以EF為底邊的等腰三角形,且tan∠PFE=時(shí),求點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知AC平分∠DAB,CE⊥AB于E,AB=AD+2BE,則下列結(jié)論:①AB+AD=2AE;②∠DAB+∠DCB=180°;③CD=CB;④S△ACE﹣2S△BCE=S△ADC;其中正確結(jié)論的個(gè)數(shù)是( 。
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com