【題目】從三角形(不是等腰三角形)一個頂點引出一條射線與對邊相交,頂點與交點之間的線段把這個三角形分割成兩個小三角形,如果分得的兩個小三角形中一個為等腰三角形,另一個與原三角形相似,我們把這條線段叫做這個三角形的完美分割線.
(1)如圖①,在△ABC中,CD為角平分線,∠A=40°,∠B=60°,求證:CD是△ABC的完美分割線;
(2)如圖②,在△ABC中,AC=2,BC=,CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,求完美分割線CD的長.
【答案】(1)詳見解析;(2)
【解析】
(1)根據(jù)三角形內(nèi)角和定理求出∠ACB=80°,根據(jù)角平分線的定義得到∠ACD=40°,證明△BCD∽△BAC,即可得到結(jié)論;
(2)根據(jù)完美分割線的定義,以及△ACD是以CD為底邊的等腰三角形,得到△BCD∽△BAC,從而,設BD=x,解方程求出x,根據(jù)相似三角形的性質(zhì)定理列式計算即可.
(1)∵∠A=40°,∠B=60°,∴∠ACB=80°,∴△ABC不是等腰三角形.
∵CD平分∠ACB,∴∠ACD=∠BCD∠ACB=40°,∴∠ACD=∠A=40°,∴△ACD是等腰三角形.
∵∠BCD=∠A=40°,∠CBD=∠ABC,∴△BCD∽△BAC,∴CD是△ABC的完美分割線;
(2)∵CD是△ABC的完美分割線,且△ACD是以CD為底邊的等腰三角形,∴△BCD∽△BAC,∴.
∵AC=AD=2,BC,設BD=x,則AB=4+x,∴,解得:x=﹣1±.
∵x>0,∴BD=x=﹣1.
∵△BCD∽△BAC,∴.
∵AC=2,BC,BD=﹣1,∴CD.
科目:初中數(shù)學 來源: 題型:
【題目】每年的9月3日是中國人民抗日戰(zhàn)爭勝利紀念日,某紅色旅游景區(qū)為紀念抗日戰(zhàn)爭勝利73周年,今年9~10月份,對團體購買門票實行優(yōu)惠,決定在原定票價基礎上每張降價16元,這樣按原定票價需花費2000元購買的門票張數(shù),現(xiàn)在只花費了1200元.
(1)求每張門票的原定票價;
(2)根據(jù)實際情況,該景區(qū)決定對網(wǎng)上購票的個人也采取優(yōu)惠,原定票價經(jīng)過連續(xù)兩次降價后票價為每張32.4元,求原定票價平均每次的下降率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內(nèi)接與⊙O,AB是直徑,⊙O的切線PC交BA的延長線于點P,OF∥BC交AC于AC點E,交PC于點F,連接AF.
(1)判斷AF與⊙O的位置關系并說明理由;
(2)若⊙O的半徑為4,AF=3,求AC的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】大美開州,最帥漢豐湖,漢豐湖步道已成為市民最好休閑圣地.雪松和余樂樂相約分別從舉子園、博物館出發(fā),沿環(huán)湖步道相向而行.雪松開始跑步前進,中途在某地改為步行,且步行的速度為跑步速度的一半,雪松先出發(fā)5分鐘后,余樂樂才騎自行車勻速向舉子園行駛.雪松到達博物館恰好用了35分鐘.兩人之間的距離y(m)與雪松離開出發(fā)地的時間x(min)之間的函數(shù)圖象如圖所示,則當余樂樂剛到舉子園時,雪松離舉子園的距離為_____米.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在平面直角坐標系中,拋物線與x軸交于A,B兩點(點A在點B左側(cè)),與y軸交于點D,點C為拋物線的頂點,過B,C兩點作直線BC,拋物線上的一點F的橫坐標是,過點F作直線FG//BC交x軸于點G.
(1)點P是直線BC上方拋物線上的一動點,連接PG與直線BC交于點E,連接EF,PF,當的面積最大時,在x軸上有一點R,使PR+CR的值最小,求出點R的坐標,并直接寫出PR+CR的最小值;
(2)如圖2,連接AD,作AD的垂直平分線與x軸交于點K,平移拋物線,使拋物線的頂點C在射線BC上移動,平移的距離是t,平移后拋物線上點A,點C的對應點分別為點A′,點C′,連接A′C′,A′K,C′K,A′C′K是否能為等腰三角形?若能,求出t的值;若不能,請說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知點A,B分別是反比例函數(shù)y(x<0),y(x>0)的圖象上的點,且∠AOB=90°,tan∠BAO,則k的值為_________.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】拋物線y=2x2+bx+c經(jīng)過(﹣3,0),(1,0)兩點
(1)求拋物線的解析式,并求出其開口方向和對稱軸
(2)用配方法求出該拋物線的頂點坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等邊△AMN,連結(jié)CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結(jié)論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結(jié)AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結(jié)CN.試探究∠ABC與∠ACN的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,用一段長為的籬笆圍成一個一邊靠墻的矩形花圃,墻長.設長為,矩形的面積為.
(1)寫出與的函數(shù)關系式;當長為多少米時,所圍成的花圃面積最大?最大值是多少?
(2)當花圃的面積為時,長為多少米?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com