如圖在平面直角坐標(biāo)系中,矩形OABC的邊OC=6,對(duì)角線OB所在直線的函數(shù)解析式精英家教網(wǎng)y=
34
x

(1)直接寫出C點(diǎn)的坐標(biāo);
(2)若D是BC邊上的點(diǎn),過D作DE⊥OB于E,已知DE=3.6.
①求出CD的長;
②以點(diǎn)C為圓心,CD長為半徑作⊙C、試問在對(duì)角線OB上是否存在點(diǎn)P,使得以點(diǎn)P為圓心的⊙P與⊙C、x軸都相切?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請說明理由.
分析:(1)依題意,點(diǎn)C在y軸上且OC=6,故點(diǎn)C的坐標(biāo)為(0,6);
(2)①依題意可得∠OCB=90°,利用勾股定理求出OB的值,然后證明△COB∽△EDB,利用線段比求出CD的長;
②過P作PM⊥OA于M、PN⊥OC于N,設(shè)點(diǎn)P橫坐標(biāo)為m,得出OM=NP=m,ON=MP=
3
4
m
,CN=6-
3
4
m
.當(dāng)⊙P與⊙C外切、與x軸相切時(shí),PC=
3
4
m
+2,然后利用勾股定理列等式解出m值.當(dāng)⊙P與⊙C內(nèi)切、與x軸相切時(shí),m2-6m+32=0得出△=62-4×1×32<0所以此一元二次方程沒有實(shí)數(shù)解.選出符合條件的點(diǎn)P坐標(biāo)即可.
解答:解:(1)C(0,6);

(2)①在矩形OABC中,∠OCB=90°,
∵OA=BC=8;
OB=
OC2+BC2
=10
,
在△COB和△EDB中,∠CBO=∠EBD,∠OCB=90°=∠DEB,精英家教網(wǎng)
∴△COB∽△EDB,
DE
OC
=
BD
BO

CD=2;
②如圖,過P作PM⊥OA于M、PN⊥OC于N,設(shè)點(diǎn)P橫坐標(biāo)為m,
∵點(diǎn)P在直線y=
3
4
x
上,
∴OM=NP=m,ON=MP=
3
4
m
,
CN=6-
3
4
m
,
當(dāng)⊙P與⊙C外切、與x軸相切時(shí),PC=
3
4
m
+2,
在Rt△PCN中,PN2+CN2=PC2m2+(6-
3
4
m)2=(
3
4
m+2)2
,
∴m2-12m+32=0,
解得m1=4,m2=8,
∴P1(4,3),P2(8,6),
同理,當(dāng)⊙P與⊙C內(nèi)切、與x軸相切時(shí),m2+(6-
3
4
m)2=(
3
4
m-2)2
m2-6m+32=0,
∵△=62-4×1×32<0,
∴此一元二次方程沒有實(shí)數(shù)解,
使⊙P與⊙C內(nèi)切、與x軸相切的點(diǎn)P不存在.
∴符合條件的點(diǎn)P是P1(4,3),P2(8,6).
點(diǎn)評(píng):本題綜合考查的是一次函數(shù)與圓相結(jié)合的運(yùn)用,難度較大.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

21、如圖在平面直角坐標(biāo)系中,△AOB的頂點(diǎn)分別為A(2,0),O(0,0),B(0,4).
①△AOC與△AOB關(guān)于x軸成軸對(duì)稱,則C點(diǎn)坐標(biāo)為
(0,-4)
;
②將△AOB繞AB的中點(diǎn)D逆時(shí)針旋轉(zhuǎn)90°得△EGF,則點(diǎn)A的對(duì)應(yīng)點(diǎn)E的坐標(biāo)為
(3,3)
;
③在圖中畫出△AOC和△EGF,△AOB與△EGF重疊的面積為
1
平方單位.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖在平面直角坐標(biāo)系xOy中,點(diǎn)A的坐標(biāo)為(2,0),以點(diǎn)A為圓心,2為半徑的圓與x軸交于O,B兩點(diǎn),C為⊙A上一點(diǎn),P是x軸上的一點(diǎn),連接CP,將⊙A向上平移1個(gè)單位長度,⊙A與x軸交于M、N,與y軸相切于點(diǎn)G,且CP與⊙A相切于點(diǎn)C,∠CAP=60°.請你求出平移后MN和PO的長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,將一塊等腰直角三角板ABC放在第二象限,且斜靠在兩坐標(biāo)軸上,且點(diǎn)A(0,2),點(diǎn)C(-1,0),如圖所示點(diǎn)B在拋物線y=ax2+ax-2上.
(1)求點(diǎn)B的坐標(biāo);
(2)求拋物線的解析式;
(3)將三角板ABC繞頂點(diǎn)A逆時(shí)針方向旋轉(zhuǎn)90°到達(dá)△AB′C′的位置,請寫出點(diǎn)B′坐標(biāo)
(1,-1)
(1,-1)
,點(diǎn)C′坐標(biāo)
(2,1)
(2,1)
;判斷點(diǎn)B′
,C′
(填“在”或“不”)在(2)中的拋物線上.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,M為x軸上一點(diǎn),⊙M交x軸于A、B兩點(diǎn),交y軸于C、D兩點(diǎn),P為
BC
上的一個(gè)動(dòng)點(diǎn),CQ平分∠PCD交AP于Q,A(-1,0),M(1,0).
(1)求C點(diǎn)坐標(biāo);
(2)當(dāng)點(diǎn)P在
BC
上運(yùn)動(dòng)時(shí),線段AQ的長是否改變?若不變,請求出其長度;若改變,請說明理由.(提示:連接AC).
(3)當(dāng)點(diǎn)P在
BC
上運(yùn)動(dòng)時(shí),是否存在這樣的點(diǎn)P,使CQ所在直線經(jīng)過點(diǎn)M?若存在請直接寫出點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖在平面直角坐標(biāo)系中,A點(diǎn)坐標(biāo)為(8,0),B點(diǎn)坐標(biāo)為(0,6)C是線段AB的中點(diǎn).請問在y軸上是否存在一點(diǎn)P,使得以P、B、C為頂點(diǎn)的三角形與△AOB相似?若存在,求出P點(diǎn)坐標(biāo);若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案