若一次函數(shù)的圖象經(jīng)過第一、二、三象限,則的取值范圍是       .
k>1.

試題分析:根據(jù)一次函數(shù)的性質(zhì)求解.
一次函數(shù)y=kx+(k1)的圖象經(jīng)過第一、二、三象限,
那么k>0,k1>0,解得k>1.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源:不詳 題型:填空題

已知平面上四點A(0,0),B(8,0),C(8,6),D(0,6),直線y=mx-3m+2(將四邊形ABCD分成面積相等的兩部分,則m的值為            

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線y=﹣x+8與x軸,y軸分別交于點A和B,M是OB上的一點,若將△ABM沿AM折疊,點B恰好落在x軸上的點B′處,則直線AM的解析式為       

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=-x+6分別與x軸、y軸交于A、B兩點;直線y=x與AB交于點C,與過點A且平行于y軸的直線交于點D.點E從點A出發(fā),以每秒1個單位的速度沿軸向左運動.過點E作x軸的垂線,分別交直線AB、OD于P、Q兩點,以PQ為邊向右作正方形PQMN,設正方形PQMN與△ACD重疊部分(陰影部分)的面積為S(平方單位),點E的運動時間為t(秒).

(1)求點C的坐標;
(2)當0<t<5時,求S與t之間的函數(shù)關系式,并求S的最大值;
(3)當t>0時,直接寫出點(4,)在正方形PQMN內(nèi)部時t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

如圖,直線l:,點A1坐標為(0,1),過點A1作y軸的垂線交直線l于點B1,以原點O 為圓心,OB1長為半徑畫弧交y一軸于點A2;再過點A2作y軸的垂線交直線于點B2,以原點O為圓心,OB2長為半徑畫弧交y軸于點A3,…,按此做法進行下去,點A4的坐標為(_______,_______);點An的坐標為(_______,_______).

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

在一條筆直的公路上有A、B兩地,甲騎自行車從A地到B地;乙騎自行車從B地到A地,到達A地后立即按原路返回,如圖是甲、乙兩人距B地的距離y(km)與行駛時間x(h)之間的函數(shù)圖象,根據(jù)圖象解答以下問題:
(1)寫出A、B兩地之間的距離;
(2)求出點M的坐標,并解釋該點坐標所表示的實際意義;
(3)若兩人之間保持的距離不超過3km時,能夠用無線對講機保持聯(lián)系,請直接寫出甲、乙兩人能夠用無線對講機保持聯(lián)系時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:解答題

書生中學小賣部工作人員到路橋批發(fā)部選購甲、乙兩種品牌的文具盒,乙品牌的進貨單價是甲品牌進貨單價的2倍,考慮各種因素,預計購進乙品牌文具盒的數(shù)量(個)與甲品牌文具盒數(shù)量(個)之間的函數(shù)關系如圖所示,當購進的甲、乙品牌的文具盒中,甲有120個時,購進甲、乙品牌文具盒共需7 200元.
(1)根據(jù)圖象,求之間的函數(shù)關系式;
(2)求甲、乙兩種品牌的文具盒進貨價;
(3)若小賣部每銷售1個甲種品牌的文具盒可獲利4元,每銷售1個乙種品牌的文具盒可獲利9元,根據(jù)學校后勤部決定,準備用不超過6 300元購進甲、乙兩種品牌的文具盒,且這兩種文具盒全部售出后獲利不低于1 795元,問小賣部工作人員有幾種進貨方案?哪種進貨方案能使獲利最大?最大獲利為多少元?

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:單選題

如圖,已知拋物線,直線,當x任取一值時,x對應的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當x=1時,y1=0,y2=4,y1<y2,此時M=0.

下列給出四個說法:
①當x>0時,y1<y2; 
②當x<0時,x值越大,M值越大;
③使得M大于2的x值不存在;
④使得M=1的x值是.
說法正確的個數(shù)是
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:初中數(shù)學 來源:不詳 題型:填空題

一個y關于x的函數(shù)同時滿足兩個條件:①圖象過(2,1)點;②當x>0時.y隨x的增大而減小,這個函數(shù)解析式為________(寫出一個即可).

查看答案和解析>>

同步練習冊答案