【題目】函數(shù)y=mx+n與,其中m≠0,n≠0,那么它們在同一坐標(biāo)系中的圖象可能是( )

A B C D

【答案】B

【解析】

試題根據(jù)圖象中一次函數(shù)圖象的位置確定m、n的值;然后根據(jù)m、n的值來確定反比例函數(shù)所在的象限,對各選項(xiàng)作出判斷:

A、函數(shù)y=mx+n經(jīng)過第一、三、四象限,m>0,n<0

<0函數(shù)y=的圖象經(jīng)過第二、四象限與圖示圖象不符故本選項(xiàng)錯(cuò)誤

B、函數(shù)y=mx+n經(jīng)過第一、三、四象限,m>0,n<0

<0函數(shù)的y=圖象經(jīng)過第二、四象限與圖示圖象一致故本選項(xiàng)正確

C、函數(shù)y=mx+n經(jīng)過第一、二、四象限,m<0,n>0

<0函數(shù)的y=圖象經(jīng)過第二、四象限與圖示圖象不符故本選項(xiàng)錯(cuò)誤

D、函數(shù)y=mx+n經(jīng)過第二、三、四象限,m<0,n<0

>0 函數(shù)的y=圖象經(jīng)過第一、三象限與圖示圖象不符故本選項(xiàng)錯(cuò)誤

故選B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠C=90°,BC=5,AC=12,M為斜邊AB上一動(dòng)點(diǎn),過M作MD⊥AC,過M作ME⊥CB于點(diǎn)E,則線段DE的最小值為_______.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在菱形ABCD中,邊長為10,A=60°,順次連接菱形ABCD各邊中點(diǎn),可得四邊形A1B1C1D1;順次連結(jié)四邊形A1B1C1D1各邊中點(diǎn),可得四邊形A2B2C2D2;順次連結(jié)四邊形A2B2C2D2各邊中點(diǎn),可得四邊形A3B3C3D3;按此規(guī)律繼續(xù)下去…則四邊形A2B2C2D2的周長是 ;四邊形A2015B2015C2015D2015的周長

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)一列數(shù)中任意三個(gè)相鄰的數(shù)之和都是22,已知,,,那么=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】4張寫著以下數(shù)字的卡片,請按要求抽出卡片,完成下列各題:

(1)從中取出2張卡片,使這2張卡片上數(shù)字之積最大,最大值是________.

(2)從中取出2張卡片,使這2張卡片上數(shù)字之差最小,最小值是________.

(3)從中取出4張卡片,將這4個(gè)數(shù)字進(jìn)行加、減、乘、除或乘方等混合運(yùn)算,使結(jié)果為24,請寫出一種符合要求的運(yùn)算式子________.(注:4個(gè)數(shù)字都必須用到且只能用一次.)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)y1=x(x≥0),y2 (x>0)的圖象如圖所示,則以下結(jié)論:

①兩函數(shù)圖象的交點(diǎn)A的坐標(biāo)為(2,2);②當(dāng)x>2時(shí),y1>y2;

③BC=2;④兩函數(shù)圖象構(gòu)成的圖形是軸對稱圖形;

⑤當(dāng)x逐漸增大時(shí),y1隨著x的增大而增大,y2隨著x的增大而減。

其中正確結(jié)論的序號(hào)是____________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)A在數(shù)軸上對應(yīng)的數(shù)為a,點(diǎn)B對應(yīng)的數(shù)為b,且|a+4|+(b﹣1)2=0,A、B之間的距離記作|AB|,定義:|AB|=|a﹣b|.

(1)求線段AB的長|AB|;

(2)設(shè)點(diǎn)P在數(shù)軸上對應(yīng)的數(shù)為x,當(dāng)|PA|﹣|PB|=2時(shí),求x的值;

(3)若點(diǎn)PA的左側(cè),M、N分別是PA、PB的中點(diǎn),當(dāng)PA的左側(cè)移動(dòng)時(shí),下列兩個(gè)結(jié)論:

①|(zhì)PM|+|PN|的值不變;②|PN|﹣|PM|的值不變,其中只有一個(gè)結(jié)論正確,請判斷出正確結(jié)論,并求其值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,矩形OABC的對角線OB,AC相交于點(diǎn)D,且BE∥AC,AE∥OB,

(1)求證:四邊形AEBD是菱形;

(2)如果OA=3,OC=2,求出經(jīng)過點(diǎn)E的反比例函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(1)探究新知:如圖1,已知△ABC與△ABD的面積相等,試判斷AB與CD的位置關(guān)系,并說明理由.

(2)結(jié)論應(yīng)用:① 如圖2,點(diǎn)M,N在反比例函數(shù)(k>0)的圖象上,過點(diǎn)M作ME⊥y軸,過點(diǎn)N作NF⊥x軸,垂足分別為E,F(xiàn).試證明:MN∥EF.

若①中的其他條件不變,只改變點(diǎn)M,N的位置如圖3所示,請判斷 MN與EF是否平行?請說明理由.

查看答案和解析>>

同步練習(xí)冊答案