(2006•煙臺(tái))如圖,在矩形ABCD中,DE⊥AC于E,設(shè)∠ADE=α,且cosα=,AB=4,則AD的長(zhǎng)為( )

A.3
B.
C.
D.
【答案】分析:由已知條件可知:AB=CD=4,∠ADE=∠ACD=α.
在Rt△DEC中,cosα=,由此可以求出CE.然后根據(jù)勾股定理求出DE,最后在Rt△AED中利用的余弦函數(shù)的定義即可求出AD.
解答:解:由已知可知:AB=CD=4,∠ADE=∠ACD=α.
在Rt△DEC中,cosα=,

∴CE=
根據(jù)勾股定理得DE=
在Rt△AED中,cosα=,

∴AD=
故選B.
點(diǎn)評(píng):此題考查了解直角三角形、直角三角形性質(zhì)和邏輯推理能力、運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源:2006年全國(guó)中考數(shù)學(xué)試題匯編《一次函數(shù)》(06)(解析版) 題型:解答題

(2006•煙臺(tái))如圖,直線分別與y軸、x軸相交于點(diǎn)A,點(diǎn)B,且AB=5,一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為1的圓,以0.8個(gè)單位/秒的速度向y軸正方向運(yùn)動(dòng),設(shè)此動(dòng)圓圓心離開(kāi)坐標(biāo)原點(diǎn)的時(shí)間為t(t≥0)(秒).
(1)求直線AB的解析式;
(2)如圖1,t為何值時(shí),動(dòng)圓與直線AB相切;
(3)如圖2,若在圓開(kāi)始運(yùn)動(dòng)的同時(shí),一動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿BA方向以1個(gè)單位/秒的速度運(yùn)動(dòng),設(shè)t秒時(shí)點(diǎn)P到動(dòng)圓圓心C的距離為s,求s與t的關(guān)系式;
(4)在(3)中,動(dòng)點(diǎn)P自剛接觸圓面起,經(jīng)多長(zhǎng)時(shí)間后離開(kāi)了圓面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省煙臺(tái)市中考數(shù)學(xué)試卷(課標(biāo)卷)(解析版) 題型:解答題

(2006•煙臺(tái))如圖,直線分別與y軸、x軸相交于點(diǎn)A,點(diǎn)B,且AB=5,一個(gè)圓心在坐標(biāo)原點(diǎn),半徑為1的圓,以0.8個(gè)單位/秒的速度向y軸正方向運(yùn)動(dòng),設(shè)此動(dòng)圓圓心離開(kāi)坐標(biāo)原點(diǎn)的時(shí)間為t(t≥0)(秒).
(1)求直線AB的解析式;
(2)如圖1,t為何值時(shí),動(dòng)圓與直線AB相切;
(3)如圖2,若在圓開(kāi)始運(yùn)動(dòng)的同時(shí),一動(dòng)點(diǎn)P從B點(diǎn)出發(fā),沿BA方向以1個(gè)單位/秒的速度運(yùn)動(dòng),設(shè)t秒時(shí)點(diǎn)P到動(dòng)圓圓心C的距離為s,求s與t的關(guān)系式;
(4)在(3)中,動(dòng)點(diǎn)P自剛接觸圓面起,經(jīng)多長(zhǎng)時(shí)間后離開(kāi)了圓面?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省煙臺(tái)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:填空題

(2006•煙臺(tái))如圖,兩建筑物AB和CD的水平距離為30米,從A點(diǎn)測(cè)得D點(diǎn)的俯角為30°,測(cè)得C點(diǎn)的俯角為60°,則建筑物CD的高為    米.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2006年山東省煙臺(tái)市中考數(shù)學(xué)試卷(大綱卷)(解析版) 題型:選擇題

(2006•煙臺(tái))如圖所示,在等腰直角三角形ABC中,∠B=90°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到的△AB′C′,則∠BAC′等于( )

A.60°
B.105°
C.120°
D.135°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源:2005年四川省宜賓市中考數(shù)學(xué)試卷(解析版) 題型:選擇題

(2006•煙臺(tái))如圖所示,在等腰直角三角形ABC中,∠B=90°,將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)60°后得到的△AB′C′,則∠BAC′等于( )

A.60°
B.105°
C.120°
D.135°

查看答案和解析>>

同步練習(xí)冊(cè)答案