【題目】如圖①,在平面直角坐標系中,拋物線經(jīng)過點兩點,且與y軸交于點C.
(1)求拋物線的表達式;
(2)如圖①,在拋物線的對稱軸上尋找一點M,使得△ACM的周長最小,求點M的坐標.
(3)如圖②,用寬為4個單位長度的直尺垂直于x軸,并沿x軸左右平移,直尺的左右兩邊所在的直線與拋物線相交于P,Q兩點(點P在點Q的左側),連接PQ,在線段PQ上方拋物線上有一動點D,連接DP,DQ.若點P的橫坐標為,求△DPQ面積的最大值,并求此時點D的坐標;
【答案】(1);(2)(1,2);(3)的面積最大值為8,此時點的坐標為,.
【解析】
(1)根據(jù)待定系數(shù)法求解即可;
(2)本題是典型的“將軍飲馬”問題,由拋物線的對稱性知:點A關于對稱軸的對稱點為點B,故只需連接BC交直線x=1于點M,則M就是使得△ACM周長最小的點,然后根據(jù)待定系數(shù)法求出直線BC的解析式,而拋物線的對稱軸易求,則點M的坐標可得;
(3)根據(jù)題意易求出點P、Q兩點坐標,然后利用待定系數(shù)法可求出直線PQ的解析式,過點作DE∥y軸交直線于點,如圖④,設點D的橫坐標為x,則DE的長可用含x的代數(shù)式表示,再根據(jù)可得關于x的關系式,然后根據(jù)二次函數(shù)的性質即可求出結果.
解:(1)將、代入,得:
,
解得:,
拋物線的表達式為;
(2)∵拋物線的解析式是,
當x=0時,y=3,
∴點C的坐標為(0,3),拋物線的對稱軸為直線x=1,
根據(jù)拋物線的對稱性知:點A關于對稱軸的對稱點為點B,連接BC交直線x=1于點M,則M就是使得△ACM周長最小的點,如圖③,
設直線BC的解析式為y=kx+3,
∵點B(3,0)在直線BC上,
∴0=3k+3,
解得:k=﹣1,
即直線BC的解析式為y=﹣x+3,
當x=1時,y=﹣1+3=2,
故BC與對稱軸的交點M的坐標為(1,2),
∴△ACM周長最小時,點M的坐標為(1,2);
(3)當點的橫坐標為時,點的橫坐標為,
此時點的坐標為,,點的坐標為,.
設直線的表達式為,
將,、,代入,得:,
解得:,
直線的表達式為.
如圖④,過點作DE∥y軸交直線于點,
設點的坐標為,則點的坐標為,
,
.
,
當時,的面積取最大值,最大值為8,此時點的坐標為,.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,點D是BC邊上的一個動點(不與B、C重合),在AC上取一點E,使∠ADE=30°.
(1)求證:△ABD∽△DCE;
(2)設BD=x,AE=y,求y關于x的函數(shù)關系式并寫出自變量x的取值范圍;
(3)當△ADE是等腰三角形時,求AE的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蛋糕房推出一種新品蛋糕,每個成本為50元經(jīng)過一段時間的售賣發(fā)現(xiàn),當單價定為90元的時候,可賣100個,而單價每降低1元,就會多賣出10個
(1)寫出銷售量 (個)與銷售單價(元)之間的函數(shù)關系式;
(2)若設銷售這種蛋糕的利潤為(元),請寫出與銷售單價 (元)之間的函數(shù)關系式,并計算當銷售單價定為多少元時該蛋糕房可獲得最大利潤(不需要計算最大利潤);
(3)若想盡可能地降低成本,并使該蛋糕房獲利6000元,應將銷售單價定為多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,有四張背面完全相同的紙牌,其正面分別畫有四個不同的幾何圖形,將這四張紙牌背面朝上洗勻.
(1)從中隨機摸出一張,求摸出的牌面圖形是中心對稱圖形的概率;
(2)小明和小亮約定做一個游戲,其規(guī)則為:先由小明隨機摸出一張紙牌,不放回,再由小亮從剩下的紙牌中隨機摸出一張,若摸出的兩張牌面圖形都是軸對稱圖形小明獲勝,否則小亮獲勝,這個游戲公平嗎?請用列表法(或樹狀圖)說明理由(紙牌用表示).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某學校為了解全校學生對電視節(jié)目的喜愛情況(新聞、體育、動畫、娛樂、戲曲),從全校學生中隨機抽取部分學生進行問卷調查,并把調查結果繪制成兩幅不完整的統(tǒng)計圖.
請根據(jù)以上信息,解答下列問題:
(1)這次被調查的學生共有多少人?
(2)請將條形統(tǒng)計圖補充完整;
(3)若該校約有1500名學生,估計全校學生中喜歡娛樂節(jié)目的有多少人?
(4)該校廣播站需要廣播員,現(xiàn)決定從喜歡新聞節(jié)目的甲、乙、丙、丁四名同學中選取2名,求恰好選中甲、乙兩位同學的概率(用樹狀圖或列表法解答)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀:我們約定,在平面直角坐標系中,經(jīng)過某點且平行于坐標軸或平行于兩坐標軸夾角平分線的直線,叫該點的“特征線”.例如,點M(1,3)的特征線有:x=1,y=3,y=x+2,y=x+4.如圖,在平面直角坐標系中有正方形OABC,點B在第一象限,A、C分別在x軸和y軸上,拋物線經(jīng)過B.C兩點,頂點D在正方形內部.
(1)寫出點M(2,3)任意兩條特征線___________________
(2)若點D有一條特征線是y=x+1,求此拋物線的解析式________________________
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】閱讀材料:各類方程的解法
求解一元一次方程,根據(jù)等式的基本性質,把方程轉化為x=a的形式.求解二元一次方程組,把它轉化為一元一次方程來解;類似的,求解三元一次方程組,把它轉化為解二元一次方程組.求解一元二次方程,把它轉化為兩個一元一次方程來解.求解分式方程,把它轉化為整式方程來解,由于“去分母”可能產(chǎn)生增根,所以解分式方程必須檢驗.各類方程的解法不盡相同,但是它們有一個共同的基本數(shù)學思想轉化,把未知轉化為已知.
用“轉化”的數(shù)學思想,我們還可以解一些新的方程.例如,一元三次方程x3+x2-2x=0,可以通過因式分解把它轉化為x(x2+x-2)=0,解方程x=0和x2+x-2=0,可得方程x3+x2-2x=0的解.
(1)問題:方程x3+x2-2x=0的解是x1=0,x2= ,x3= ;
(2)拓展:用“轉化”思想求方程的解;
(3)應用:如圖,已知矩形草坪ABCD的長AD=8m,寬AB=3m,小華把一根長為10m的繩子的一端固定在點B,沿草坪邊沿BA,AD走到點P處,把長繩PB段拉直并固定在點P,然后沿草坪邊沿PD、DC走到點C處,把長繩剩下的一段拉直,長繩的另一端恰好落在點C.求AP的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在四邊形中,∥,,直線.當直線沿射線方向,從點開始向右平移時,直線與四邊形的邊分別相交于點、.設直線向右平移的距離為,線段的長為,且與的函數(shù)關系如圖2所示,則四邊形的周長是_____.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,△ABC內接于⊙O,AD是△ABC的中線,AE∥BC,射線BE交AD于點F,交⊙O于點G,點F是BE的中點,連接CE.
(1)求證:四邊形ADCE為平行四邊形;
(2)若BC=2AB,求證: .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com