【題目】閱讀與應(yīng)用:
閱讀1:a、b為實(shí)數(shù),且a>0,b>0,因?yàn)?/span>,所以,從而(當(dāng)a=b時(shí)取等號(hào)).
閱讀2:函數(shù)(常數(shù)m>0,x>0),由閱讀1結(jié)論可知: ,所以當(dāng)即時(shí),函數(shù)的最小值為.
閱讀理解上述內(nèi)容,解答下列問(wèn)題:
問(wèn)題1:已知一個(gè)矩形的面積為4,其中一邊長(zhǎng)為x,則另一邊長(zhǎng)為,周長(zhǎng)為,求當(dāng)x=__________時(shí),周長(zhǎng)的最小值為_(kāi)_________.
問(wèn)題2:已知函數(shù)y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),當(dāng)x=__________時(shí), 的最小值為_(kāi)_________.
問(wèn)題3:某民辦學(xué)習(xí)每天的支出總費(fèi)用包含以下三個(gè)部分:一是教職工工資6400元;二是學(xué)生生活費(fèi)每人10元;三是其他費(fèi)用.其中,其他費(fèi)用與學(xué)生人數(shù)的平方成正比,比例系數(shù)為0.01.當(dāng)學(xué)校學(xué)生人數(shù)為多少時(shí),該校每天生均投入最低?最低費(fèi)用是多少元?(生均投入=支出總費(fèi)用÷學(xué)生人數(shù))
【答案】問(wèn)題1: 2 8 問(wèn)題2: 3 8 問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,依題意得: ,因?yàn)?/span>x>0,所以,當(dāng)即x=800時(shí),y取最小值26.答:當(dāng)學(xué)校學(xué)生人數(shù)為800人時(shí),該校每天生均投入最低,最低費(fèi)用是26元.
【解析】試題
問(wèn)題1:當(dāng) 時(shí),周長(zhǎng)有最小值,求x的值和周長(zhǎng)最小值;
問(wèn)題2:變形,由當(dāng)x+1= 時(shí), 的最小值,求出x值和的最小值;
問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,生均投入為y元,根據(jù)生均投入=支出總費(fèi)用÷學(xué)生人數(shù),列出關(guān)系式,根據(jù)前兩題解法,從而求解.
試題解析:
問(wèn)題1:∵當(dāng) ( x>0)時(shí),周長(zhǎng)有最小值,
∴x=2,
∴當(dāng)x=2時(shí),有最小值為=4.即當(dāng)x=2時(shí),周長(zhǎng)的最小值為2×4=8;
問(wèn)題2:∵y1=x+1(x>-1)與函數(shù)y2=x2+2x+17(x>-1),
∴,
∵當(dāng)x+1= (x>-1)時(shí), 的最小值,
∴x=3,
∴x=3時(shí), 有最小值為4+4=8,即當(dāng)x=3時(shí), 的最小值為8;
問(wèn)題3:設(shè)學(xué)校學(xué)生人數(shù)為x人,則生均投入y元,依題意得
,因?yàn)?/span>x>0,所以,當(dāng)即x=800時(shí),y取最小值26.
答:當(dāng)學(xué)校學(xué)生人數(shù)為800時(shí),該校每天生均投入最低,最低費(fèi)用是26元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在下面的平面直角坐標(biāo)系中,畫(huà)出符合下列條件的點(diǎn):
(1)畫(huà)出5個(gè)縱坐標(biāo)比橫坐標(biāo)大2的點(diǎn),分別標(biāo)上,,,,.
(2)畫(huà)出5個(gè)橫坐標(biāo)是縱坐標(biāo)的2倍的點(diǎn),分別標(biāo)上,,,,.
(3)觀察上面兩題所畫(huà)出的點(diǎn),你有什么發(fā)現(xiàn),分別用語(yǔ)言敘述出來(lái).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=15,BC=9,點(diǎn)P是線段AC上的一個(gè)動(dòng)點(diǎn),連接BP,將線段BP繞點(diǎn)P逆時(shí)針旋轉(zhuǎn)90°得到線段PD,連接AD,則線段AD的最小值是______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】一塊直角三角形的木板,它的一條直角邊AC長(zhǎng)為1.5米,面積為1.5平方米.現(xiàn)在要把它加工成一個(gè)正方形桌面,甲、乙兩人的加工方法分別如圖(ⅰ)、(ⅱ)所示,記兩個(gè)正方形面積分別為S1、S2,請(qǐng)通過(guò)計(jì)算比較S1與S2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某經(jīng)銷(xiāo)商從市場(chǎng)得知如下信息:
某品牌空調(diào)扇 | 某品牌電風(fēng)扇 | |
進(jìn)價(jià)(元/臺(tái)) | 700 | 100 |
售價(jià)(元/臺(tái)) | 900 | 160 |
他現(xiàn)有40000元資金可用來(lái)一次性購(gòu)進(jìn)該品牌空調(diào)扇和電風(fēng)扇共100臺(tái),設(shè)該經(jīng)銷(xiāo)商購(gòu)進(jìn)空調(diào)扇臺(tái),空調(diào)扇和電風(fēng)扇全部銷(xiāo)售完后獲得利潤(rùn)為元.
(1)求關(guān)于的函數(shù)解析式;
(2)利用函數(shù)性質(zhì),說(shuō)明該經(jīng)銷(xiāo)商如何進(jìn)貨可獲利最大?最大利潤(rùn)是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】二次函數(shù)y=ax2+bx+c的圖象如圖所示,對(duì)稱(chēng)軸是直線x=-1,有以下結(jié)論:①abc>0;②4ac<b2;③2a+b=0;④a-b+c>0.其中正確的結(jié)論的個(gè)數(shù)是( )
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC是等邊三角形,AC上有一點(diǎn)D,分別以BD為邊作等邊△BDE和等腰△BDF,邊BC、DE交于點(diǎn)H,點(diǎn)F在BA延長(zhǎng)線上且DB=DF,連接CE.
(1)若AB=8,AD=4,求△BDF的面積;
(2)求證:BC=AF+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,二次函數(shù)的圖象交坐標(biāo)軸于A(﹣1,0),B(4,0),C(0,﹣4)三點(diǎn),點(diǎn)P是直線BC下方拋物線上一動(dòng)點(diǎn).
(1)求這個(gè)二次函數(shù)的解析式;
(2)動(dòng)點(diǎn)P運(yùn)動(dòng)到什么位置時(shí),△PBC面積最大,求出此時(shí)P點(diǎn)坐標(biāo)和△PBC的最大面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在四個(gè)均由十六個(gè)小正方形組成的正方形網(wǎng)格中,各有一個(gè)三角形ABC,那么這四個(gè)三角形中,不是直角三角形的是( 。
A. B.
C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com