【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx+c與x軸相交于A、B兩點,與y軸相交于點C(0,3).且點A的坐標(biāo)為(﹣1,0),點B的坐標(biāo)為(3,0),點P是拋物線上第一象限內(nèi)的一個點.
(1)求拋物線的函數(shù)表達式;
(2)連PO、PB,如果把△POB沿OB翻轉(zhuǎn),所得四邊形POP′B恰為菱形,那么在拋物線的對稱軸上是否存在點Q,使△QAB與△POB相似?若存在求出點Q的坐標(biāo);若不存在,說明理由;
(3)若(2)中點Q存在,指出△QAB與△POB是否位似?若位似,請直接寫出其位似中心的坐標(biāo).
【答案】
(1)解:∵A(﹣1,0)、B(3,0)、C(0,3)在拋物線y=ax2+bx+c上,
∴ ,
解得 .
∴拋物線的解析式為y=﹣x2+2x+3
(2)解:在拋物線的對稱軸上存在點Q,使△QAB與△POB相似,如圖所示.
∵四邊形POP′B為菱形,
∴PO=PB,
∴∠POB=∠PBO.
∵點Q在拋物線的對稱軸上,
∴QA=QB,
∴∠QAB=∠QBA.
由△QAB與△POB相似可得∠PBO=∠QBA,
∴點Q、P、B共線.
∵PO=PB,
∴點P在OB的垂直平分線上,
∴xP= ,
此時yP=﹣( )2+2× +3= ,
點P的坐標(biāo)為( , ).
設(shè)直線PB的解析式為y=mx+n,
則有 ,
解得 .
∴直線PB的解析式為y=﹣ x+ .
∵拋物線的對稱軸為x=﹣ =1,
∴xQ=1,yQ=﹣ ×1+ =5,
∴點Q的坐標(biāo)為(1,5)
根據(jù)對稱性點Q坐標(biāo)還可以為(1.﹣5)
(3)解:△QAB與△POB位似,位似中心為點B,點B的坐標(biāo)為(3,0).
【解析】(1)點A、B、C的坐標(biāo)已知,只需運用待定系數(shù)法就可求出拋物線的解析式;(2)由四邊形POP′B為菱形可得PO=PB,從而有∠POB=∠PBO.由點Q在拋物線的對稱軸上可得QA=QB,從而有∠QAB=∠QBA.由△QAB與△POB相似可得∠PBO=∠QBA,從而可得點Q、P、B共線.由PO=PB可得點P在OB的垂直平分線上,從而可得xP= ,代入拋物線即可求出點P的坐標(biāo),設(shè)直線PB的解析式為y=mx+n,運用待定系數(shù)法就可求出直線PB的解析式.由拋物線的對稱軸方程可得到點Q的橫坐標(biāo),代入直線PB的解析式,即可得到點Q的坐標(biāo);(3)觀察圖象,易知△QAB與△POB位似,位似中心即為點B,由此可得到位似中心的坐標(biāo).
【考點精析】本題主要考查了確定一次函數(shù)的表達式和相似三角形的性質(zhì)的相關(guān)知識點,需要掌握確定一個一次函數(shù),需要確定一次函數(shù)定義式y(tǒng)=kx+b(k不等于0)中的常數(shù)k和b.解這類問題的一般方法是待定系數(shù)法;對應(yīng)角相等,對應(yīng)邊成比例的兩個三角形叫做相似三角形才能正確解答此題.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某數(shù)學(xué)興趣小組在全校范圍內(nèi)隨機抽取了50名同學(xué)進行“舌尖上的滄州——我最喜愛的滄州小吃”調(diào)查活動,將調(diào)查問卷整理后繪制成如圖所示的不完整條形統(tǒng)計圖:
調(diào)查問卷
在下面四種滄州小吃中,你最喜愛的是(____)(單選)
A.泊頭老豆腐 B.羊腸子 C.連鎮(zhèn)燒雞 D.油酥燒餅
請根據(jù)所給信息解答以下問題:
(1)請補全條形統(tǒng)計圖;
(2)若全校有2000名同學(xué),請估計全校同學(xué)中最喜愛“泊頭老豆腐”的同學(xué)有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,壁虎在一座底面半徑為 2 米,高為 5 米的油罐的下底邊沿點 A處,它 發(fā)現(xiàn)在自己的正上方油罐上邊緣的點 B處有一只害蟲,便決定捕捉這只害蟲,為了不引起害 蟲的注意,它故意不走直線,而是繞著油罐,沿一條螺旋路線,從背后對害蟲進行突然襲擊.結(jié) 果,壁虎偷襲成功,獲得了一頓美餐.請問壁虎至少要爬行多少路程 才能捕到害蟲?(π取 3)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在□ABCD中,點E在邊AD上,以BE為折痕,將△ABE向上翻折,點A正好落在CD上的點F處,若△FDE的周長為8,△FCB的周長為22,則□ABCD的周長為________,FC的長為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小穎和小紅兩位同學(xué)在學(xué)習(xí)“概率”時,做投擲骰子(質(zhì)地均勻的正方體)試驗,她們共做了60次試驗,試驗的結(jié)果如下:
朝上的點數(shù) | 1 | 2 | 3 | 4 | 5 | 6 |
出現(xiàn)的次數(shù) | 7 | 9 | 6 | 8 | 20 | 10 |
(1)計算“3點朝上”的頻率和“5點朝上”的頻率.
(2)小穎說:“根據(jù)上述試驗,一次試驗中出現(xiàn)5點朝上的概率最大”;小紅說:“如果投擲600次,那么出現(xiàn)6點朝上的次數(shù)正好是100次”.小穎和小紅的說法正確嗎?為什么?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】把下列各數(shù)分別填在相應(yīng)的括號內(nèi).
-,0,0.16,3, ,-, ,,-,-3.14
有理數(shù):{____________________________________________________};
無理數(shù):{____________________________________________________};
負(fù)實數(shù):{____________________________________________________}.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形網(wǎng)格中的每個小正方形的邊長都是1,每個小格的頂點叫做格點.
(1)在圖1中以格點為頂點畫一個面積為5的等腰直角三角形;
(2)在圖2中以格點為頂點畫一個三角形,使三角形三邊長分別為2、、 ;
(3)如圖3,點A、B、C是小正方形的頂點,求∠ABC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,以點A為圓心,AB長為半徑畫弧交AD于點F,再分別以點B、F為圓心,大于 BF長為半徑畫弧,兩弧交于一點P,連
接AP并延長交BC于點E,連接EF.
(1)四邊形ABEF是;(選填矩形、菱形、正方形、無法確定)(直接填寫結(jié)果)
(2)AE,BF相交于點O,若四邊形ABEF的周長為40,BF=10,則AE的長為 , ∠ABC=°.(直接填寫結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,所有正三角形的一邊平行于x軸,一頂點在y軸上,從內(nèi)到外,它們的邊長依次為2,4,6,8,…,頂點依次用A1、A2、A3、A4、…表示,其中A1A2與x軸、底邊A1A2與A4A5、A4A5與A7A8、…均相距一個單位,則A2017的坐標(biāo)是 .
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com