【題目】已知:如圖,矩形ABCD中,AB=2cm,AD=3cm.點(diǎn)P和點(diǎn)Q同時(shí)從點(diǎn)A出發(fā),點(diǎn)P以3cm/s的速度沿A→D方向運(yùn)動(dòng)到點(diǎn)D為止,點(diǎn)Q以2cm/s的速度沿A→B→C→D方向運(yùn)動(dòng)到點(diǎn)D為止,則△APQ的面積S(cm2)與運(yùn)動(dòng)時(shí)間t(s)之間函數(shù)關(guān)系的大致圖象是( 。
A.B.
C.D.
【答案】C
【解析】
研究?jī)蓚(gè)動(dòng)點(diǎn)到矩形各頂點(diǎn)時(shí)的時(shí)間,分段討論求出函數(shù)解析式即可求解.
解:分三種情況討論:
(1)當(dāng)0≤t≤1時(shí),點(diǎn)P在AD邊上,點(diǎn)Q在AB邊上,
∴S=,
∴此時(shí)拋物線經(jīng)過坐標(biāo)原點(diǎn)并且開口向上;
(2)當(dāng)1<t≤2.5時(shí),點(diǎn)P與點(diǎn)D重合,點(diǎn)Q在BC邊上,
∴S==3,
∴此時(shí),函數(shù)值不變,函數(shù)圖象為平行于t軸的線段;
(3)當(dāng)2.5<t≤3.5時(shí),點(diǎn)P與點(diǎn)D重合,點(diǎn)Q在CD邊上,
∴S=×3×(7﹣2t))=﹣t+.
∴函數(shù)圖象是一條線段且S隨t的增大而減。
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,正方形ABCD的邊長(zhǎng)為a,E.F分別是邊AD、BC的中點(diǎn),點(diǎn)G在CD上.且,DF、EG相交于點(diǎn)H.
(1)求出的值;
(2)求證:EG⊥DF;
(3)過點(diǎn)H作MN∥CD,分別交AD、BC于點(diǎn)M、N,點(diǎn)P是MN上一點(diǎn),當(dāng)點(diǎn)P在什么位置時(shí),△PDC的周長(zhǎng)最小,并求△PDC周長(zhǎng)的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx過A(4,0) B(1,3)兩點(diǎn),點(diǎn)C 、B關(guān)于拋物線的對(duì)稱軸對(duì)稱,過點(diǎn)B作直線BH⊥x軸,交x軸于點(diǎn)H
(1)求拋物線的解析式.
(2)直接寫出點(diǎn)C的坐標(biāo),并求出△ABC的面積.
(3)點(diǎn)P是拋物線BA段上一動(dòng)點(diǎn),當(dāng)△ABP的面積為3時(shí),求出點(diǎn)P的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】打折前,買20件A商品和30件B商品要用2200元,買50件A商品和10件B商品要用2900元.若打折后,買40件A商品和40件B商品用了3240元,比不打折少花多少錢?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=-x2+bx+c與x軸相交于A(-1,0),B(5,0)兩點(diǎn).
(1)求拋物線的解析式;
(2)在第二象限內(nèi)取一點(diǎn)C,作CD垂直x軸于點(diǎn)D,鏈接AC,且AD=5,CD=8,將Rt△ACD沿x軸向右平移m個(gè)單位,當(dāng)點(diǎn)C落在拋物線上時(shí),求m的值;
(3)在(2)的條件下,當(dāng)點(diǎn)C第一次落在拋物線上記為點(diǎn)E,點(diǎn)P是拋物線對(duì)稱軸上一點(diǎn).試探究:在拋物線上是否存在點(diǎn)Q,使以點(diǎn)B、E、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)B在x軸上,∠ABO=90°,AB=BO,直線y=﹣3x﹣4與反比例函數(shù)y=交于點(diǎn)A,交y軸于C點(diǎn).
(1)求k的值;
(2)點(diǎn)D與點(diǎn)O關(guān)于AB對(duì)稱,連接AD、CD,證明△ACD是直角三角形;
(3)在(2)的條件下,點(diǎn)E在反比例函數(shù)圖象上,若S△OCE=S△OCD,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】設(shè)△ABC,點(diǎn)P是平面內(nèi)的任意一點(diǎn)(A、B、C三點(diǎn)除外),若點(diǎn)P與點(diǎn)A、B、C中任意兩點(diǎn)的連線的夾角為直角時(shí),則稱點(diǎn)P為△ABC的一個(gè)勾股點(diǎn).
(1)如圖1,若點(diǎn)P是△ABC內(nèi)一點(diǎn),∠A=50°,∠ACP=10°,∠ABP=30°,試說明點(diǎn)P是△ABC的一個(gè)勾股點(diǎn).
(2)如圖2,Rt△ABC中,∠ACB=90°,AC=6,BC=8,點(diǎn)D是AB的中點(diǎn),點(diǎn)P在射線CD上,若點(diǎn)P是△ABC的勾股點(diǎn),則CP= ;
(3)如圖3,四邊形ABDC中,DB=DA,∠BCD=45°,AC=,CD=3.則點(diǎn)D能否是△ABC的勾股點(diǎn),若能,求出BC的長(zhǎng):若不能,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC是等邊三角形,AD⊥BC于點(diǎn)D,點(diǎn)E是直線AD上的動(dòng)點(diǎn),將BE繞點(diǎn)B順時(shí)針方向旋轉(zhuǎn)60°得到BF,連接EF、CF、AF.
(1)如圖1,當(dāng)點(diǎn)E在線段AD上時(shí),猜想∠AFC和∠FAC的數(shù)量關(guān)系;(直接寫出結(jié)果)
(2)如圖2,當(dāng)點(diǎn)E在線段AD的延長(zhǎng)線上時(shí),(1)中的結(jié)論還成立嗎?若成立,請(qǐng)證明你的結(jié)論,若不成立,請(qǐng)寫出你的結(jié)論,并證明你的結(jié)論;
(3)點(diǎn)E在直線AD上運(yùn)動(dòng),當(dāng)△ACF是等腰直角三角形時(shí),請(qǐng)直接寫出∠EBC的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(感知)如圖①,點(diǎn)C是AB中點(diǎn),CD⊥AB,P是CD上任意一點(diǎn),由三角形全等的判定方法“SAS”易證△PAC≌△PBC,得到線段垂直平分線的一條性質(zhì)“線段垂直平分線上的點(diǎn)到線段兩端的距離相等”
(探究)如圖②,在平面直角坐標(biāo)系中,直線y=-x+1分別交x軸、y軸于點(diǎn)A和點(diǎn)B,點(diǎn)C是AB中點(diǎn),CD⊥AB交OA于點(diǎn)D,連結(jié)BD,求BD的長(zhǎng)
(應(yīng)用)如圖③
(1)將線段AB繞點(diǎn)A順時(shí)針旋轉(zhuǎn)90°得到線段AB′,請(qǐng)?jiān)趫D③網(wǎng)格中畫出線段AB;
(2)若存在一點(diǎn)P,使得PA=PB′,且∠APB′≠90°,當(dāng)點(diǎn)P的橫、縱坐標(biāo)均為整數(shù)時(shí),則AP長(zhǎng)度的最小值為______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com