如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分是一個菱形,容易知道當兩張紙條垂直時,菱形的周長有最小值8,那么菱形周長的最大值是    cm.
【答案】分析:畫出圖形,設(shè)菱形的邊長為x,根據(jù)勾股定理求出周長即可.
解答:解:當兩張紙條如圖所示放置時,菱形周長最大,設(shè)這時菱形的邊長為xcm,
在Rt△ABC中,
由勾股定理:x2=(8-x)2+22
解得:x=,
∴4x=17,
即菱形的最大周長為17cm.
故答案為17.
點評:本題的解答關(guān)鍵是怎樣放置紙條使得到的菱形的周長最大,然后根據(jù)圖形列方程.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

23、如圖,將兩張長為8,寬為2的矩形紙條交叉放置.
(1)求證:重疊部分的圖形是菱形;
(2)求重疊部分圖形的周長的最大值和最小值.
(要求畫圖﹑推理﹑計算)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將兩張長為8,寬為2的矩形紙條交叉,使重疊部分ABCD是一個菱形.菱形周長的最小值是
8
8
,菱形周長最大值是
17
17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•仙居縣二模)如圖,將兩張長為8,寬為2的矩形紙條交叉,重疊部分構(gòu)成的菱形周長的最大值是
17
17

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鄂爾多斯)如圖,將兩張長為4,寬為1的矩形紙條交叉并旋轉(zhuǎn),使重疊部分成為一個菱形.旋轉(zhuǎn)過程中,當兩張紙條垂直時,菱形周長的最小值是4,那么菱形周長的最大值是
17
2
17
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,將兩張長為10,寬5的矩形紙條交叉,要使重疊部分是一個菱形,若菱形周長的最小值20,那么菱形周長的最大值是
25
25

查看答案和解析>>

同步練習冊答案