【題目】有一個運(yùn)算裝置,當(dāng)輸入值為x時(shí).其輸出值為y,且y是x的二次函數(shù).已知輸入值為﹣2,0,1時(shí),相應(yīng)的輸出值分別為5,﹣3,﹣4.

(1)求二次函數(shù)的關(guān)系式;

(2)如圖,在所給的坐標(biāo)系中畫出這個二次函數(shù)的圖象,并根據(jù)圖象寫出當(dāng)輸出值y為正數(shù)時(shí),輸入值x的范圍.

【答案】(1) y=x2-2x-3;(2x<-1或x>3.

【解析】(1)把三個點(diǎn)的坐標(biāo)代入二次函數(shù)根據(jù)待定系數(shù)法求出函數(shù)的解析式即可;
(2)函數(shù)值為正數(shù),即是二次函數(shù)與與x軸的交點(diǎn)的上方的函數(shù)圖象所對應(yīng)的x的值.

解:(1)設(shè)所求二次函數(shù)的解析式為y=ax2+bx+c,
把(-2,5)(0,-3)(1,-4)代入得,

,解得,
故所求的解析式為:y=x2-2x-3;

(2)如圖所示,


由圖象可得:x<-1或x>3.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知八邊形的各個內(nèi)角相等,則每一個內(nèi)角都等于

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,正確的是( )
A.(x34=x12
B.a2a3=a6
C.(2a)3=6a3
D.a3+a3=a6

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】心理學(xué)家研究發(fā)現(xiàn),一般情況下,一節(jié)課40分鐘中,學(xué)生的注意力隨教師講課的變化而變化,開始上課時(shí),學(xué)生的注意力逐步增強(qiáng),中間有一段時(shí)間學(xué)生的注意力保持較為理想的穩(wěn)定狀態(tài),隨后學(xué)生的注意力開始分散.經(jīng)過實(shí)驗(yàn)分析可知,學(xué)生的注意力指標(biāo)數(shù)y隨時(shí)間x(分鐘)的變化規(guī)律如圖所示(其中AB、BC分別為線段,CD為雙曲線的一部分):

(1)開始上課后第五分鐘時(shí)與第三十分鐘時(shí)相比較,何時(shí)學(xué)生的注意力更集中?

(2)一道數(shù)學(xué)競賽題,需要講16分鐘,為了效果較好,要求學(xué)生的注意力指標(biāo)數(shù)最低達(dá)到36,那么經(jīng)過適當(dāng)安排,老師能否在學(xué)生注意力達(dá)到所需的狀態(tài)下講解完這道題目?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如果一個三角形有三條對稱軸,那么它一定是( )

A. 等邊三角形B. 等腰三角形

C. 直角三角形D. 銳角三角形

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx的圖象經(jīng)過點(diǎn)A2,4)與B6,0).

1)求a,b的值;

2)點(diǎn)C是該二次函數(shù)圖象上A,B兩點(diǎn)之間的一動點(diǎn),橫坐標(biāo)為x2x6),寫出四邊形OACB的面積S關(guān)于點(diǎn)C的橫坐標(biāo)x的函數(shù)表達(dá)式,并求S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若規(guī)定向東走為正,那么﹣8米表示( )
A.向東走8米
B.向南走8米
C.向西走8米
D.向北走8米

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一個被等分成了3個相同扇形的圓形轉(zhuǎn)盤,3個扇形分別標(biāo)有數(shù)字1、3、6,指針的位置固定,轉(zhuǎn)動轉(zhuǎn)盤后任其自由停止,其中的某個扇形會恰好停止在指針?biāo)傅奈恢茫ㄖ羔樦赶騼蓚扇形的交線時(shí),重新轉(zhuǎn)動轉(zhuǎn)盤).

1)請用畫樹形圖或列表的方法(只選其中一種),表示出分別轉(zhuǎn)動轉(zhuǎn)盤兩次轉(zhuǎn)盤自由停止后,指針?biāo)干刃螖?shù)字的所有結(jié)果;

2)求分別轉(zhuǎn)動轉(zhuǎn)盤兩次轉(zhuǎn)盤自由停止后,指針?biāo)干刃蔚臄?shù)字之和的算術(shù)平方根為無理數(shù)的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】(2016·杭州中考)如圖,已知AC是⊙O的直徑,點(diǎn)B在圓周上(不與A、C重合),點(diǎn)DAC的延長線上,連接BD交⊙O于點(diǎn)E,若∠AOB=3∠ADB,則(  )

A. DEEB B. DEEB C. DEDO D. DEOB

查看答案和解析>>

同步練習(xí)冊答案