已知xy+x+y=71,x2y+xy2=880,x,y為自然數(shù),則x2+y2=________.
2993或146
分析:將xy+x+y=71,x2y+xy2=880稍作變化,變?yōu)閤y+(x+y)=71,xy(x+y)=880.此時x+y、xy可以看做一元二次方程t2-71t+880=0的兩個解.解出該方程的解即為x+y,xy的值.再將x+y,xy代入x2+y2=(x+y)2-2xy求值即可.
解答:∵xy+x+y=71,x2y+xy2=880,
∴xy(x+y)=880,xy+(x+y)=71,
∴x+y、xy可以看做一元二次方程t2-71t+880=0的兩個解,
解得t=55或16,
∴x+y=55、xy=16或x+y=16、xy=55,
①當x+y=55、xy=16時,x2+y2=(x+y)2-2xy=552-2×16=2993;
②當x+y=16、xy=55時,x2+y2=(x+y)2-2xy=162-2×55=146.
故答案為:2993或146.
點評:本題考查因式分解的應用、一元二次方程.解決本題的關鍵是將x+y、xy可以看做一元二次方程t2-71t+880=0的兩個解,解出t即可知x+y、xy的值.