【題目】如圖①,在Rt△ABC中,∠ABC=90o,AB是⊙O的直徑,⊙O交AC于點(diǎn)D,過點(diǎn)D的直線交BC于點(diǎn)E,交AB的延長(zhǎng)線于點(diǎn)P,∠A=∠PDB.
(1)求證:PD是⊙O的切線;
(2)若AB=4,DA=DP,試求弧BD的長(zhǎng);
(3)如圖②,點(diǎn)M是弧AB的中點(diǎn),連結(jié)DM,交AB于點(diǎn)N.若tanA=,求的值.
【答案】(1)見解析;(2);(3).
【解析】
(1)連結(jié)OD;由AB是⊙O的直徑,得到∠ADB=90°,根據(jù)等腰三角形的性質(zhì)得到∠ADO=∠A,∠BDO=∠ABD;得到∠PDO=90°,且D在圓上,于是得到結(jié)論;
(2)設(shè)∠A=x,則∠A=∠P=x,∠DBA=2x,在△ABD中,根據(jù)∠A+∠ABD=90o列方程求出x的值,進(jìn)而可得到∠DOB=60o,然后根據(jù)弧長(zhǎng)公式計(jì)算即可;
(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,然后證明△OMN∽△FDN,根據(jù)相似三角形的性質(zhì)求解即可.
(1)連結(jié)OD,∵AB是⊙O的直徑,∴∠ADB=90o,
∠A+∠ABD=90o,又∵OA=OB=OD,∴∠BDO=∠ABD,
又∵∠A=∠PDB,∴∠PDB+∠BDO=90o,即∠PDO=90o,
且D在圓上,∴PD是⊙O的切線.
(2)設(shè)∠A=x,
∵DA=DP,∴∠A=∠P=x,∴∠DBA=∠P+∠BDP=x+x=2x,
在△ABD中,
∠A+∠ABD=90o,x=2x=90o,即x=30o,
∴∠DOB=60o,∴弧BD長(zhǎng).
(3)連結(jié)OM,過D作DF⊥AB于點(diǎn)F,∵點(diǎn)M是的中點(diǎn),
∴OM⊥AB,設(shè)BD=x,則AD=2x,AB==2OM,即OM=,
在Rt△BDF中,DF=,
由△OMN∽△FDN得.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,轉(zhuǎn)盤的白色扇形和黑色扇形的圓心角分別為240°和120°.讓轉(zhuǎn)盤自由轉(zhuǎn)動(dòng)2次,則指針一次落在白色區(qū)域,另一次落在黑色區(qū)域的概率是________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,點(diǎn)E、F分別在邊AB和CD上,下列條件不能判定四邊形DEBF一定是平行四邊形的是( )
A.AE=CFB.DE=BFC.∠ADE=∠CBFD.∠AED=∠CFB
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知等邊△ABC的邊長(zhǎng)為4,點(diǎn)P,Q分別是邊BC,AC上一點(diǎn),PB=1,則PA=_____,若BQ=AP,則AQ=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知是等邊三角形,.
(1)如圖1,點(diǎn)在線段上從點(diǎn)出發(fā)沿射線以的速度運(yùn)動(dòng),過點(diǎn)作交線段于點(diǎn),同時(shí)點(diǎn)從點(diǎn)出發(fā)沿的延長(zhǎng)線以的速度運(yùn)動(dòng),連接、.設(shè)點(diǎn)的運(yùn)動(dòng)時(shí)間為秒.
①求證:是等邊三角形;
②當(dāng)點(diǎn)不與點(diǎn)、重合時(shí),求證:.
(2)如圖2,點(diǎn)為的中點(diǎn),作直線,點(diǎn)為直線上一點(diǎn),連接,將線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)得到,則點(diǎn)在直線上運(yùn)動(dòng)的過程中,的最小值是多少?請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖為二次函數(shù)y=ax2+bx+c(a≠0)的圖象,則下列說法:①a>0 ②2a+b=0 ③a+b+c>0 ④當(dāng)﹣1<x<3時(shí),y>0,其中正確的個(gè)數(shù)為( 。
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某文教用品商店欲購(gòu)進(jìn)、兩種筆記本,用元購(gòu)進(jìn)的種筆記本與用元購(gòu)進(jìn)的種筆記本的數(shù)量相同,每本種筆記本的進(jìn)價(jià)比每本種筆記本的進(jìn)價(jià)貴元.
(1)求、兩種筆記本每本的進(jìn)價(jià)分別為多少元?
(2)若該商店種筆記本每本售價(jià)元,種筆記本每本售價(jià)元,準(zhǔn)備購(gòu)進(jìn)、兩種筆記本共本,且這兩種筆記本全部售出后總獲利不小于元,則最多購(gòu)進(jìn)種筆記本多少本?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,有下列5個(gè)結(jié)論: ① c=0;②該拋物線的對(duì)稱軸是直線x=﹣1;③當(dāng)x=1時(shí),y=2a;④am+bm+a>0(m≠﹣1);⑤設(shè)A(100,y),B(﹣100,y)在該拋物線上,則y>y.其中正確的結(jié)論有___________ .(寫出所有正確結(jié)論的序號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,在平面直角坐標(biāo)系xOy中,A(0,4),B(8,0),C(8,4).
(1)試說明四邊形AOBC是矩形.
(2)在x軸上取一點(diǎn)D,將△DCB繞點(diǎn)C順時(shí)針旋轉(zhuǎn)90°得到△D'CB'(點(diǎn)D'與點(diǎn)D對(duì)應(yīng)).
①若OD=3,求點(diǎn)D'的坐標(biāo).
②連接AD'、OD',則AD'+OD'是否存在最小值,若存在,請(qǐng)直接寫出最小值及此時(shí)點(diǎn)D'的坐標(biāo);若不存在,請(qǐng)說明理由.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com