【題目】如圖,坐標(biāo)平面上,△ABC與△DEF全等,其中A、B、C的對(duì)應(yīng)頂點(diǎn)分別為D、E、F,且AB=BC=5.若A點(diǎn)的坐標(biāo)為(﹣3,1),B、C兩點(diǎn)在直線y=﹣3上,D、E兩點(diǎn)在y軸上.
(1)在△ABC中,作AH、CK分別垂直BC、AB于H、K,求證:KC=HA;
(2)求F點(diǎn)到y(tǒng)軸的距離.

【答案】
(1)證明:如圖,AH⊥BC于H,CK⊥AB于K.

∴∠DPF=∠AKC=∠CHA=90°,

∵AB=BC,

∴∠BAC=∠BCA,

在△AKC和△CHA中,

∴△AKC≌△CHA,

∴KC=HA


(2)作PF⊥DE于E.

∵B、C在y=﹣3上,且點(diǎn)A的坐標(biāo)為(﹣3,1),

∴AH=4,

∴KC=AH=4,

∵△ABC≌△DEF,

∴∠BAC=∠EDF,AC=DF,

在△AKC和△DPF中,

∴△AKC≌△DPF,

∴KC=PF=4.

∴F點(diǎn)到y(tǒng)軸的距離4.


【解析】(1)欲證明KC=HA,只要證明△AKC≌△CHA即可.(2)作PF⊥DE于E,只要證明△AKC≌△DPF即可.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB=4,射線BM和AB互相垂直,點(diǎn)D是AB上的一個(gè)動(dòng)點(diǎn),點(diǎn)E在射線BM上,BE= DB,作EF⊥DE并截取EF=DE,連結(jié)AF并延長(zhǎng)交射線BM于點(diǎn)C.設(shè)BE=x,BC=y,則y關(guān)于x的函數(shù)解析式是(
A.y=﹣
B.y=﹣
C.y=﹣
D.y=﹣

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AC=4,D為BC上一點(diǎn),CD=2,且△ADC與△ABD的面積比為1:3;
(1)求證:△ADC∽△BAC;
(2)當(dāng)AB=8時(shí),求sinB.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某林業(yè)部門(mén)要考察某種幼樹(shù)在一定條件下的移植成活率,在同樣的條件下對(duì)這種幼樹(shù)進(jìn)行大量移植,并統(tǒng)計(jì)成活情況,記錄如下(其中頻率結(jié)果保留小數(shù)點(diǎn)后三位)

移植總數(shù)(n)

10

50

270

400

750

1500

3500

7000

9000

成活數(shù)(m)

8

47

235

369

662

1335

3203

6335

8118

成活的頻率

0.800

0.940

0.870

0.923

0.883

0.890

0.915

0.905

0.902

由此可以估計(jì)幼樹(shù)移植成活的概率為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】隨著科技與經(jīng)濟(jì)的發(fā)展,中國(guó)廉價(jià)勞動(dòng)力的優(yōu)勢(shì)開(kāi)始逐漸消失,而作為新興領(lǐng)域的機(jī)器人產(chǎn)業(yè)則迅速崛起,機(jī)器人自動(dòng)化線的市場(chǎng)也越來(lái)越大,并且逐漸成為自動(dòng)化生產(chǎn)線的主要方式,某化工廠要在規(guī)定時(shí)間內(nèi)搬運(yùn)1200千元化工原料.現(xiàn)有A,B兩種機(jī)器人可供選擇,已知A型機(jī)器人比B型機(jī)器人每小時(shí)多搬運(yùn)30千克,A型機(jī)器人搬運(yùn)900千克所用的時(shí)間與B型機(jī)器人搬運(yùn)600千克所用的時(shí)間相等.
(1)兩種機(jī)器人每小時(shí)分別搬運(yùn)多少化工原料?
(2)該工廠原計(jì)劃同時(shí)使用這兩種機(jī)器人搬運(yùn),工作一段時(shí)間后,A型機(jī)器人又有了新的搬運(yùn)任務(wù),但必須保證這批化工原料在11小時(shí)內(nèi)全部搬運(yùn)完畢.求:A型機(jī)器人至少工作幾個(gè)小時(shí),才能保證這批化工原料在規(guī)定的時(shí)間內(nèi)完成.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)
(1)求證:不論k為任何實(shí)數(shù),該函數(shù)的圖象與x軸必有兩個(gè)交點(diǎn);
(2)若該二次函數(shù)的圖象與x軸的兩個(gè)交點(diǎn)在點(diǎn)A(1,0)的兩側(cè),且關(guān)于x的一元二次方程k2x2+(2k+3)x+1=0有兩個(gè)不相等的實(shí)數(shù)根,求k的整數(shù)值;
(3)在(2)的條件下,關(guān)于x的另一方程x2+2(a+k)x+2a﹣k2+6k﹣4=0 有大于0且小于3的實(shí)數(shù)根,求a的整數(shù)值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校為參加高郵市“五運(yùn)會(huì)”廣播操表演,準(zhǔn)備從七、八、九三個(gè)年級(jí)分別選送到位的一男、一女共6名備選人中,每個(gè)年級(jí)隨機(jī)選出1名學(xué)生,共3名學(xué)生擔(dān)任領(lǐng)操員
(1)選出3名領(lǐng)操員中,男生的人數(shù)可能是
(2)求選出“兩男一女”3名領(lǐng)操員的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】數(shù)學(xué)活動(dòng)課上,老師和學(xué)生一起去測(cè)量學(xué)校升旗臺(tái)上旗桿AB的高度.如圖,老師測(cè)得升旗臺(tái)前斜坡FC的坡比為iFC=1:10(即EF:CE=1:10),學(xué)生小明站在離升旗臺(tái)水平距離為35m(即CE=35m)處的C點(diǎn),測(cè)得旗桿頂端B的仰角為α.已知tanα= ,升旗臺(tái)高AF=1m,小明身高CD=1.6m,請(qǐng)幫小明計(jì)算出旗桿AB的高度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】將一個(gè)直角三角形紙片ABO放置在平面直角坐標(biāo)系中,點(diǎn) ,點(diǎn)B(0,1),點(diǎn)O(0,0).P是邊AB上的一點(diǎn)(點(diǎn)P不與點(diǎn)A,B重合),沿著OP折疊該紙片,得點(diǎn)A的對(duì)應(yīng)點(diǎn)A'.
(1)如圖①,當(dāng)點(diǎn)A'在第一象限,且滿足A'B⊥OB時(shí),求點(diǎn)A'的坐標(biāo);

(2)如圖②,當(dāng)P為AB中點(diǎn)時(shí),求A'B的長(zhǎng);

(3)當(dāng)∠BPA'=30°時(shí),求點(diǎn)P的坐標(biāo)(直接寫(xiě)出結(jié)果即可).

查看答案和解析>>

同步練習(xí)冊(cè)答案