在平面直角坐標(biāo)系O中,已知A(2,-2),在軸上確定點P,使△AOP為等腰三角形,則符合條件的點(  )

A.2     B.3     C.4     D.5

 

【答案】

C

【解析】分二種情況進行討論:

當(dāng)OA為等腰三角形的腰時,以O(shè)為圓心OA為半徑的圓弧與y軸有兩個交點,以A為圓心AO為半徑的圓弧與y軸有一個交點;

當(dāng)OA為等腰三角形的底時,作線段OA的垂直平分線,與y軸有一個交點.

∴符合條件的點一共4個.

故選C

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

在平面直角坐標(biāo)系xOy中,已知拋物線y=a(x+1)2+c(a>0)與x軸交于A、B兩點(點A在點B的左側(cè)),與y軸交于點C,其頂點為M,若直線MC的函數(shù)表達式為y=kx-3,與x軸的交點為N,且cos∠BCO=
3
10
10

(1)求此拋物線的函數(shù)表達式;
(2)在此拋物線上是否存在異于點C的點P,使以N、P、C為頂點的三角形是以NC為一條直角邊的直角三角形?若存在,求出點P的坐標(biāo);若不存在,請說明理由;
(3)過點A作x軸的垂線,交直線MC于點Q.若將拋物線沿其對稱軸上下平移,使拋物線與線段NQ總有公共點,則拋物線向上最多可平移多少個單位長度?向下最多可平移多少個單位長度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(2012•廣安)在平面直角坐標(biāo)系xOy中,如果有點P(-2,1)與點Q(2,-1),那么:①點P與點Q關(guān)于x軸對稱;②點P與點Q關(guān)于y軸對稱;③點P與點Q關(guān)于原點對稱;④點P與點Q都在y=-
2
x
的圖象上,前面的四種描述正確的是(  )

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,分別平行x、y軸的兩直線a、b相交于點A(3,4),連接OA,若在直線a上存在點P,使△AOP是等腰三角形,那么所有滿足條件的點P的坐標(biāo)是( 。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,在平面直角坐標(biāo)系xOy中,A1(1,0),A2(3,0),A3(6,0),A4(10,0),…,以A1A2為對角線作第一個正方形A1C1A2B1,以A2A3為對角線作第二個正方形A2C2A3B2,以A3A4為對角線作第三個正方形A3C3A4B3,…,頂點B1,B2,B3,…都在第一象限,按照這樣的規(guī)律依次進行下去,點B5的坐標(biāo)為
(18,3)
(18,3)
;點Bn的坐標(biāo)為
(
(n+1)2
2
,
n+1
2
)
(
(n+1)2
2
,
n+1
2
)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

已知:在平面直角坐標(biāo)系xOy中,一次函數(shù)y=kx-4k的圖象與x軸交于點A,拋物線y=ax2+bx+c經(jīng)過O、A兩點.
(1)試用含a的代數(shù)式表示b;
(2)設(shè)拋物線的頂點為D,以D為圓心,DA為半徑的圓被x軸分為劣弧和優(yōu)弧兩部分.若將劣弧沿x軸翻折,翻折后的劣弧落在⊙D內(nèi),它所在的圓恰與OD相切,求⊙D半徑的長及拋物線的解析式;
(3)設(shè)點B是滿足(2)中條件的優(yōu)弧上的一個動點,拋物線在x軸上方的部分上是否存在這樣的點P,使得∠POA=
43
∠OBA?若存在,求出點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案