【題目】如圖,正方形ABCD和正方形ECGF的邊長分別為a6

(1) 寫出表示陰影部分面積的代數(shù)式(結果要求化簡);

(2) 時,陰影部分的面積

【答案】(1) ;(2)14

【解析】試題分析:1)依據(jù)陰影部分的面積=兩個正方形的面積之和減去兩個直角三角形的面積列出代數(shù)式即可;.

2)將a=4代入進行計算即可.

試題解析:(1)觀察圖形可知S陰影=SABCD+SCEFG-SABD-SBGF.

∵正方形ABCD的邊長是a,正方形CEFG的邊長是6,.

SABCD=a2SCEFG=62,SABD=a2,SBGF=×a+6×6.

S陰影=a2+62-a2-×a+6×6=a2-3a+18.

2)當a=4時,S陰影=×42-3×4+18=14

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AD平分∠CAB,點F在邊AC上,若∠CABBDF=180°.求證:DFDB.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】具備下列條件的三角形ABC中,不為直角三角形的是( )

AA+B=C BA=B=C

CA=90°﹣∠B DA﹣∠B=90°

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,四邊形ABCD內接于圓O,點E在對角線AC上.
(1)若BC=DC,∠CBD=39°,求∠BCD的度數(shù);
(2)若在AC上有一點E,且EC=BC=DC,求證:∠1=∠2.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,長方形OABC的邊OA在數(shù)軸上,O為原點,長方形OABC的面積為12,OC邊長為3.

(1)數(shù)軸上點A表示的數(shù)為________

(2)將長方形OABC沿數(shù)軸水平移動,移動后的長方形記為O′A′B′C′,移動后的長方形O′A′B′C′與原長方形OABC重疊部分(如圖2中陰影部分)的面積記為S.

①當S恰好等于原長方形OABC面積的一半時,數(shù)軸上點A′表示的數(shù)是多少?

  ②設點A的移動距離AA′x.

  ()S4時,求x的值;

  )D為線段AA′的中點,點E在線段OO′上,且OEOO′,當點D,E所表示的數(shù)互為相反數(shù)時,求x的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】20筐白菜,以每筐25千克為標準,超過或不足的千克數(shù)分別用正、負數(shù)來表示,記錄如下:

與標準質量的差值(單位:千克)

數(shù)

1

4

2

3

2

8

(1)20筐白菜中,最重的一筐比最輕的一筐重______千克;

(2)與標準重量比較,20筐白菜總計超過或不足多少千克?

3)若白菜每千克售價元,則出售這20筐白菜可賣多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知點D是等腰直角三角形ABC斜邊BC上一點(不與點B重合),連AD,線段AD繞點A逆時針方向旋轉90°得到線段AE,連CE,求證:BD⊥CE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知在△ABC中,∠A:∠B:∠C=2:3:4,CD是∠ACB平分線,求∠A和∠CDB的度數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某市居民生活用水的費用由“城市供水費” 和“污水處理費” 兩部分組成.為了鼓勵市民節(jié)約用水,其中城市供水費按階梯式計費:一個月用水10噸以內(包括10噸)的用戶,每噸收1.5元;一個月用水超過10噸的用戶,10噸水仍按每噸1.5元收費,超過10噸的部分,按每噸2元收費.另外污水處理費按每噸0.65元收取.

(1)某居民5月份用水8,應交水費多少元? 6月份用水12,應交水費多少元?

(2)若某戶某月用水x噸,請你用含有x的代數(shù)式表示該月應交的水費.

查看答案和解析>>

同步練習冊答案