解:(1)直線AN是⊙O的切線,理由是:
∵AB為⊙O直徑,
∴∠ACB=90°,
∴AC⊥BC,
∵CN=CM,
∴∠CAN=∠DAC,
∵AC=CD,
∴∠D=∠DAC,
∵∠B=∠D,
∴∠B=∠NAC,
∵∠B+∠BAC=90°,
∴∠NAC+∠BAC=90°,
∴OA⊥AN,
∴直線AN是⊙O的切線;
(2)過點C作CE⊥AD,
∵tan∠CAD=
,
∴
=
,
∵AC=10,
∴設(shè)CE=3x,則AE=4x,
在Rt△ACE中,根據(jù)勾股定理,CE
2+AE
2=AC
2,
∴(3x)
2+(4x)
2=100,
解得x=2,
∴AE=8,
∵AC=CD,
∴AD=2AE=2×8=16.
分析:(1)由MC=CN,且得出AC垂直于MN,則△AMC是等腰三角形,所以∠CAN=∠DAC,再由AC=DC,則∠D=∠DAC,根據(jù)同弧所對的圓周角相等得出∠B=∠D,從而得出∠B=∠NAC,即可得出∠BAN=90°;
(2)等腰三角形ACD中,兩腰AC=CD=10,且已知底角正切值,過點C作CE⊥AD,底邊長AD可以求出來.
點評:本題考查了切線的判定和性質(zhì),圓周角定理以及解直角三角形,是基礎(chǔ)知識比較簡單.