已知拋物線y=x2-(2m+4)x+m2-10與x軸交于A、B兩點(diǎn),C是拋物線的頂點(diǎn).
(1)用配方法求頂點(diǎn)C的坐標(biāo)(用含有m的代數(shù)式表示);
(2)“若AB的長為2,求拋物線的解析式”的解法如下:
由(1)知,對(duì)稱軸與x軸交于點(diǎn)D(________,0).
∵拋物線具有對(duì)稱性,且AB=2,
∴AD=DB=|xA-xD|=.
∵A(xA,0)在拋物線y=(x-h(huán))2+k上,
∴(xA-h(huán))2+k=0. 、
∵h(yuǎn)=xC=xD,
∴將|xA-xD|=代入①,得到關(guān)于m的方程0=()2+(________). 、
補(bǔ)全解題過程,并簡述步驟①的解題依據(jù),步驟②的解題方法.
(3)將(2)中條件“AB的長為2”改為“△ABC為等邊三角形”,用類似的方法求出拋物線的解析式.
解答: (1)∵y=x2-(2m+4)x+m2-10=〔x-(m+2)〕2-4m-14,∴頂點(diǎn) C的坐標(biāo)為(m+2,-4m-14).(2)D(m+2,0). 又可得到 0=()2+(-4m-14). 、解得 m=-3.當(dāng) m=-3時(shí),拋物線y=x2+2x-1與x軸有交點(diǎn),且AB=2符合題意.故所求拋物線的解析式為 y=x2+2x-1.步驟①的解題依據(jù)是:拋物線上一點(diǎn)的坐標(biāo)滿足函數(shù)的解析式;步驟②的解題方法是:代入法. (3)∵△ABC是等邊三角形, ∴由 (1)知CD=|-4m-14|=4m+14,(-4m-14<0),AD=DB=CD=(4m+14)=|xA-xD|. ∵點(diǎn) A(xA,0)在拋物線上,∴0=(xA-h)2+k.∵ h=xC=xD,∴將 |xA-xD|=(4m+14)代入上式,得0=(4m+14)2-4m-14.∵- 4m-14<0,∴(4m+14)-1=0,∴m=-.當(dāng) m=-時(shí),拋物線,y=x2+x-與x軸有交點(diǎn),且符合題意.故所求拋物線的解析式為 y=x2+x-. |
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源:2013年遼寧省營口市中考模擬(一)數(shù)學(xué)試卷(帶解析) 題型:解答題
如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn), A點(diǎn)的坐標(biāo)為(-1,0),過點(diǎn)C的直線y=x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過P作PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)填空:點(diǎn)C的坐標(biāo)是 ,b= ,c= ;
(2)求線段QH的長(用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2013年遼寧省營口市中考模擬(一)數(shù)學(xué)試卷(解析版) 題型:解答題
如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點(diǎn), A點(diǎn)的坐標(biāo)為(-1,0),過點(diǎn)C的直線y=x-3與x軸交于點(diǎn)Q,點(diǎn)P是線段BC上的一個(gè)動(dòng)點(diǎn),過P作PH⊥OB于點(diǎn)H.若PB=5t,且0<t<1.
(1)填空:點(diǎn)C的坐標(biāo)是 ,b= ,c= ;
(2)求線段QH的長(用含t的式子表示);
(3)依點(diǎn)P的變化,是否存在t的值,使以P、H、Q為頂點(diǎn)的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源:2011屆江蘇省太倉市九年級(jí)上學(xué)期期中考試數(shù)學(xué)卷 題型:填空題
已知拋物線y=x2-x-1與x軸的一個(gè)交點(diǎn)為(m,0),則代數(shù)式m2-m+2011的值是 ▲ .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com