如圖,已知拋物線y=x2+bx+c與坐標(biāo)軸交于A、B、C三點, A點的坐標(biāo)為(-1,0),過點C的直線y=x-3與x軸交于點Q,點P是線段BC上的一個動點,過P作PH⊥OB于點H.若PB=5t,且0<t<1.

(1)填空:點C的坐標(biāo)是     ,b=   ,c=    

(2)求線段QH的長(用含t的式子表示);

(3)依點P的變化,是否存在t的值,使以P、H、Q為頂點的三角形與△COQ相似?若存在,求出所有t的值;若不存在,說明理由.

 

【答案】

(1)(0,-3),-,-3;(2)|4-8t|;(3)t1-1,t2,t3

【解析】

試題分析:(1)由于直線y=x-3過C點,因此C點的坐標(biāo)為(0,-3),那么拋物線的解析式中c=-3,然后將A點的坐標(biāo)代入拋物線的解析式中即可求出b的值;

(2)求QH的長,需知道OQ,OH的長.根據(jù)CQ所在直線的解析式即可求出Q的坐標(biāo),也就得出了OQ的長,然后求OH的長.在(1)中可得出拋物線的解析式,那么可求出B的坐標(biāo).在直角三角形BPH中,可根據(jù)BP=5t以及∠CBO的正弦值(可在直角三角形COB中求出).得出BH的長,根據(jù)OB的長即可求出OH的長.然后OH,OQ的差的絕對值就是QH的長;

(3)本題要分①當(dāng)H在Q、B之間.②在H在O,Q之間兩種情況進(jìn)行討論;根據(jù)不同的對應(yīng)角得出的不同的對應(yīng)成比例線段來求出t的值.

(1)(0,-3),b=-,c=-3.

(2)由(1),得y=x2x-3,它與x軸交于A,B兩點,得B(4,0).

∴OB=4,

又∵OC=3,

∴BC=5.

由題意,得△BHP∽△BOC,

∵OC∶OB∶BC=3∶4∶5,

∴HP∶HB∶BP=3∶4∶5,

∵PB=5t,

∴HB=4t,HP=3t.

∴OH=OB-HB=4-4t.

由y=x-3與x軸交于點Q,得Q(4t,0).

∴OQ=4t.

①當(dāng)H在Q、B之間時,QH=OH-OQ=(4-4t)-4t=4-8t.

②當(dāng)H在O、Q之間時,QH=OQ-OH=4t-(4-4t)=8t-4.

綜合①,②得QH=|4-8t|;

(3)存在t的值,使以P、H、Q為頂點的三角形與△COQ相似.

①當(dāng)H在Q、B之間時,QH=4-8t,

若△QHP∽△COQ,則QH∶CO=HP∶OQ,得,解得t=

若△PHQ∽△COQ,則PH∶CO=HQ∶OQ,得,解得t1-1,t2=--1(舍去).

②當(dāng)H在O、Q之間時,QH=8t-4.

若△QHP∽△COQ,則QH∶CO=HP∶OQ,得,解得t=

若△PHQ∽△COQ,則PH∶CO=HQ∶OQ,得,解得t1=t2=1(舍去).

綜上所述,存在的值,t1-1,t2,t3

考點:二次函數(shù)的綜合題

點評:此類問題綜合性強(qiáng),難度較大,在中考中比較常見,一般作為壓軸題,題目比較典型.

 

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

如圖,已知拋物線y=x-ax+a-4a-4與x軸相交于點A和點B,與y軸相交于點D(0,8),直線DC平行于x軸,交拋物線于另一點C,動點P以每秒2個單位長度的速度從C點出發(fā),沿C→D運(yùn)動,同時,點Q以每秒1個單位長度的速度從點A出發(fā),沿A→B運(yùn)動,連接PQ、CB,設(shè)點P運(yùn)動的時間為t秒.

(1)求a的值;

(2)當(dāng)四邊形ODPQ為矩形時,求這個矩形的面積;

(3)當(dāng)四邊形PQBC的面積等于14時,求t的值.

(4)當(dāng)t為何值時,△PBQ是等腰三角形?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

(9分)如圖,已知拋物線yx2+bx-3a過點A(1,0),B(0,-3),與x軸交于另一點C.

(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點P,使△PBC為以點B為直角頂點的直角三角形,
求點P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點Q,使以P,Q,B,C為頂點的四邊形
為直角梯形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011年江蘇省蘇州市中考模擬數(shù)學(xué)卷 題型:解答題

(本題9分)如圖,已知拋物線yax2bx+3的圖象與x軸交于A、B兩點,與y軸交于點C,且點C、D是拋物線上的一對對稱點.

【小題1】(1)求拋物線的解析式;
【小題2】(2)求點D的坐標(biāo),并在圖中畫出直線BD;
【小題3】(3)求出直線BD的一次函數(shù)解析式,并根據(jù)圖象回答:當(dāng)x滿足什么條件時,上述二次函數(shù)的值大于該一次函數(shù)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年蘇州工業(yè)園區(qū)九年級下學(xué)期學(xué)科調(diào)研數(shù)學(xué)卷 題型:解答題

(9分)如圖,已知拋物線yx2+bx-3a過點A(1,0),B(0,-3),與x軸交于另一點C.

(1)求拋物線的解析式;
(2)若在第三象限的拋物線上存在點P,使△PBC為以點B為直角頂點的直角三角形,
求點P的坐標(biāo);
(3)在(2)的條件下,在拋物線上是否存在一點Q,使以P,Q,B,C為頂點的四邊形
為直角梯形?若存在,請求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2011-2012學(xué)年陜西省興平市九年級上學(xué)期期末練習(xí)數(shù)學(xué)卷 題型:解答題

(本題滿分10分)

如圖,已知拋物線y=ax2+bx+c(a≠0)的對稱軸為x=1,且拋物線經(jīng)過A(—1,0)、C(0,—3)兩點,與x軸交于另一點B.

1.(1)求這條拋物線所對應(yīng)的函數(shù)關(guān)系式;

2.(2)在拋物線的對稱軸x=1上求一點M,使點M到點A的距離與到點C的距離之和最小,并求出此時點M的坐標(biāo);

3.(3)設(shè)點P為拋物線的對稱軸x=1上的一動點,求使∠PCB=90°的點P的坐標(biāo).

 

 

查看答案和解析>>

同步練習(xí)冊答案