精英家教網(wǎng)如圖,⊙O的半徑為6cm,射線PM與⊙O相切于點(diǎn)C,且PC=16cm.
(1)請(qǐng)你作出圖中線段PC的垂直平分線EF,垂足為Q,并求出QO的長(zhǎng);
(2)在(1)的基礎(chǔ)上畫出射線QO,分別交⊙O于點(diǎn)A、B,將直線EF沿射線QM方向以5cm/s 的速度平移(平移過程中直線EF始終保持與PM垂直),設(shè)平移時(shí)間為t.當(dāng)t為何值時(shí),直線EF與⊙O相切?
(3)直接寫出t為何值時(shí),直線EF與⊙O無公共點(diǎn)?t為何值時(shí),直線EF與⊙O有兩個(gè)公共點(diǎn).
分析:(1)連接圓心和切點(diǎn)構(gòu)造直角三角形,利用勾股定理求得QO的長(zhǎng);
(2)當(dāng)直線EF與⊙O相切時(shí),連接圓心與切點(diǎn)構(gòu)造等邊三角形求得直線EF運(yùn)動(dòng)的距離,除以速度即得到時(shí)間,本題應(yīng)分內(nèi)切和外切兩種情況討論;
(3)根據(jù)直線與圓相交和相離確定時(shí)間的取值范圍.
解答:解:精英家教網(wǎng)
(1)如圖,連接OC,
∵PC切⊙O與點(diǎn)C,
∴OC⊥PC,
∵EF垂直平分PC,PC=16cm
∴QC=8cm,
∴QO=
QC2+OC2
=10厘米;

(2)當(dāng)直線EF與⊙O相切于點(diǎn)D、交直線PM于點(diǎn)N時(shí),連接OD.
∴四邊形ODNC是正方形,
∴CN=OD=6,精英家教網(wǎng)
∴QN=QC+CN=6+8=14或QN=QC-CN=8-6=2,
∵直線EF沿射線QM方向以5cm/s 的速度平移,
∴t=
2
5
s或
14
5
s;

(3)當(dāng)0<t<
2
5
或t>
14
5
時(shí),直線EF與⊙O無公共點(diǎn),
當(dāng)
2
5
<t<
14
5
時(shí),直線EF與⊙O有兩個(gè)公共點(diǎn).
點(diǎn)評(píng):本題考查了勾股定理的應(yīng)用、相似三角形的判定及性質(zhì)及動(dòng)點(diǎn)問題,解決動(dòng)點(diǎn)問題的關(guān)鍵是化動(dòng)為靜.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為5,AB=5
3
,C是圓上一點(diǎn),則∠ACB=
 
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為3,直徑AB⊥弦CD,垂足為E,點(diǎn)F是BC的中點(diǎn),那么EF2+OF2=
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為
5
,圓心與坐標(biāo)原點(diǎn)重合,在直角坐標(biāo)系中,把橫坐標(biāo)、縱坐標(biāo)都是整數(shù)的點(diǎn)稱為格點(diǎn),則⊙O上格點(diǎn)有
 
個(gè),設(shè)L為經(jīng)過⊙O上任意兩個(gè)格點(diǎn)的直線,則直線L同時(shí)經(jīng)過第一、二、四象限的概率是
 

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,⊙O的半徑為13cm,弦AB∥CD,兩弦位于圓心O的兩側(cè),AB=24cm,CD=10cm,求AB和CD的距離.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

如圖,⊙O的半徑為5,P是弦MN上的一點(diǎn),且MP:PN=1:2.若PA=2,則MN的長(zhǎng)為
6
2
6
2

查看答案和解析>>

同步練習(xí)冊(cè)答案