如圖所示,OM是∠BOC的角平分線,ON是∠AOB的角平分線,且∠AOC=72°,試求∠MON的度數(shù).當OB在∠AOC內(nèi)取不同位置時,∠MON的值是否發(fā)生變化?并說明理由.

解:∵OM是∠BOC的角平分線,ON是∠AOB的角平分線,
∴∠NOB=∠AOB,∠BOM=∠BOC,
∴∠MON=∠AOC,
∵∠AOC=72°,
∴∠MON=×72°=36°,
∵∠AOC不變,
∴當OB在∠AOC內(nèi)取不同位置時,∠MON的值不會發(fā)生變化.
故答案為:36°,不會發(fā)生變化.
分析:先根據(jù)角平分線的定義得出∠NOB=∠AOB,∠BOM=∠BOC,進而可得出∠MON=∠AOC,故可得出結(jié)論.
點評:本題考查的是角平分線的定義,即從一個角的頂點出發(fā),把這個角分成相等的兩個角的射線叫做這個角的平分線.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,OM是∠AOC的平分線,ON是∠BOC的平分線,
(1)如果∠AOC=28°,∠MON=35°,求出∠AOB的度數(shù);
(2)如果∠MON=n°,求出∠AOB的度數(shù);
(3)如果∠MON的大小改變,∠AOB的大小是否隨之改變?它們之間有怎樣的大小關系?請寫出來.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

精英家教網(wǎng)如圖所示,OM是∠BOC的角平分線,ON是∠AOB的角平分線,且∠AOC=72°,試求∠MON的度數(shù).當OB在∠AOC內(nèi)取不同位置時,∠MON的值是否發(fā)生變化?并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2010•賀州)如圖所示,OM是一堵高為2.5米的圍墻截面的高,小明在圍墻內(nèi)投籃,籃球從點A處投出,卻投到了籃球框外,正好打在了斜靠在圍墻上的一根竹竿CD的點B處,籃球經(jīng)過的路線是二次函數(shù)y=ax2+bx+4圖象的一部分.現(xiàn)以O為原點,垂直于OM的水平線為x軸,OM所在的直線為y軸,建立如圖所示的平面直角坐標系,如果籃球不被竹竿擋住,籃球?qū)⑼ㄟ^圍墻外的點E,點E的坐標為(-3,
72
),點B和點E關于此二次函數(shù)圖象的對稱軸對稱,若tan∠OCM=1.(圍墻的厚度忽略不計,圍墻內(nèi)外水平面高度一樣)
(1)求竹竿CD所在的直線的解析式;
(2)求點B的坐標;
(3)在圍墻外距圍墻底部O點5.5米處有一個大池塘,如果籃球投出后不被竹竿擋住,籃球會不會直接落入池塘?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2010年廣西賀州市中考數(shù)學試卷(解析版) 題型:解答題

如圖所示,OM是一堵高為2.5米的圍墻截面的高,小明在圍墻內(nèi)投籃,籃球從點A處投出,卻投到了籃球框外,正好打在了斜靠在圍墻上的一根竹竿CD的點B處,籃球經(jīng)過的路線是二次函數(shù)y=ax2+bx+4圖象的一部分.現(xiàn)以O為原點,垂直于OM的水平線為x軸,OM所在的直線為y軸,建立如圖所示的平面直角坐標系,如果籃球不被竹竿擋住,籃球?qū)⑼ㄟ^圍墻外的點E,點E的坐標為(-3,),點B和點E關于此二次函數(shù)圖象的對稱軸對稱,若tan∠OCM=1.(圍墻的厚度忽略不計,圍墻內(nèi)外水平面高度一樣)
(1)求竹竿CD所在的直線的解析式;
(2)求點B的坐標;
(3)在圍墻外距圍墻底部O點5.5米處有一個大池塘,如果籃球投出后不被竹竿擋住,籃球會不會直接落入池塘?請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源:2011年廣西河池市宜州市中考數(shù)學一模試卷(解析版) 題型:解答題

如圖所示,OM是一堵高為2.5米的圍墻截面的高,小明在圍墻內(nèi)投籃,籃球從點A處投出,卻投到了籃球框外,正好打在了斜靠在圍墻上的一根竹竿CD的點B處,籃球經(jīng)過的路線是二次函數(shù)y=ax2+bx+4圖象的一部分.現(xiàn)以O為原點,垂直于OM的水平線為x軸,OM所在的直線為y軸,建立如圖所示的平面直角坐標系,如果籃球不被竹竿擋住,籃球?qū)⑼ㄟ^圍墻外的點E,點E的坐標為(-3,),點B和點E關于此二次函數(shù)圖象的對稱軸對稱,若tan∠OCM=1.(圍墻的厚度忽略不計,圍墻內(nèi)外水平面高度一樣)
(1)求竹竿CD所在的直線的解析式;
(2)求點B的坐標;
(3)在圍墻外距圍墻底部O點5.5米處有一個大池塘,如果籃球投出后不被竹竿擋住,籃球會不會直接落入池塘?請說明理由.

查看答案和解析>>

同步練習冊答案