精英家教網 > 初中數學 > 題目詳情
如圖,在Rt△ABC中,AB=AC,D、E是斜邊BC上兩點,且∠DAE=45°,將△ADC繞點A順時針旋轉90°后,得到△AFB,連接EF,下列結論中正確的個數有①∠EAF=45°;②△ABE∽△ACD;③AE平分∠CAF;④BE2+DC2=DE2( )

A.1個
B.2個
C.3個
D.4個
【答案】分析:①根據旋轉的性質知∠CAD=∠BAF,因為∠BAC=90°,∠DAE=45°,所以∠CAD+∠BAE=45°,可得∠EAF=45°;
②因為∠CAD與∠BAE不一定相等,所以△ABE與△ACD不一定相似;
③根據SAS可證△ADE≌△AFE,得∠AED=∠AEF;DE=EF;
④BF=CD,EF=DE,∠FBE=90°,根據勾股定理判斷.
解答:解:①根據旋轉的性質知∠CAD=∠BAF.
∵∠BAC=90°,∠DAE=45°,
∴∠CAD+∠BAE=45°.
∴∠EAF=45°,故①正確;
②因為∠CAD與∠BAE不一定相等,所以△ABE與△ACD不一定相似,故②錯誤;
③∵AF=AD,∠FAE=∠DAE=45°,AE=AE,
∴△ADE≌△AFE,得∠AED=∠AEF,
即AE平分∠DAF,故③錯誤;
④∵∠FBE=45°+45°=90°,
∴BE2+BF2=EF2(勾股定理),
∵△ADC繞點A順時針旋轉90°后,得到△AFB,∴△AFB≌△ADC,∴BF=CD,
又∵EF=DE,
∴BE2+CD2=DE2(等量代換).故④正確.
故選B.
點評:此題主要考查圖形的旋轉變換,解題時注意旋轉前后對應的相等關系.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

(2013•莆田質檢)如圖,在Rt△ABC中,∠C=90°,∠BAC的平分線AD交BC于點D,點E是AB上一點,以AE為直徑的⊙O過點D,且交AC于點F.
(1)求證:BC是⊙O的切線;
(2)若CD=6,AC=8,求AE.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,AD和BD分別是∠BAC和∠ABC的平分線,它們相交于點D,求點D到BC的距離.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠C=90°,∠A=30°,BC=1,將三角板中一個30°角的頂點D放在AB邊上移動,使這個30°角的兩邊分別與△ABC的邊AC、BC相交于點E、F,且使DE始終與AB垂直.
(1)畫出符合條件的圖形.連接EF后,寫出與△ABC一定相似的三角形;
(2)設AD=x,CF=y.求y與x之間函數解析式,并寫出函數的定義域;
(3)如果△CEF與△DEF相似,求AD的長.

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,BD⊥AC,sinA=
3
5
,則cos∠CBD的值是( 。

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在Rt△ABC中,∠ACB=90°,AC=8cm,BC=4cm,D、E分別為邊AB、BC的中點,連接DE,點P從點A出發(fā),沿折線AD-DE-EB運動,到點B停止.點P在AD上以
5
cm/s的速度運動,在折線DE-EB上以1cm/s的速度運動.當點P與點A不重合時,過點P作PQ⊥AC于點Q,以PQ為邊作正方形PQMN,使點M落在線段AC上.設點P的運動時間為t(s).
(1)當點P在線段DE上運動時,線段DP的長為
(t-2)
(t-2)
cm,(用含t的代數式表示).
(2)當點N落在AB邊上時,求t的值.
(3)當正方形PQMN與△ABC重疊部分圖形為五邊形時,設五邊形的面積為S(cm2),求S與t的函數關系式.

查看答案和解析>>

同步練習冊答案