【題目】已知:如圖,在平行四邊形ABCD中,AC為對角線,E是邊AD上一點,BE⊥AC交AC于點F,BE、CD的延長線交于點G,且∠ABE=∠CAD.
(1)求證:四邊形ABCD是矩形;
(2)如果AE=EG,求證:AC2=BCBG.
【答案】
(1)解:證明:
∵BE⊥AC,
∴∠AFB=90°.
∴∠ABE+∠BAF=90°.
∵∠ABE=∠CAD.
∴∠CAD+∠BAF=90°.
即∠BAD=90°.
∵四邊形ABCD是平行四邊形,
∴四邊形ABCD是矩形;
(2)解:連接AG.
∵AE=EG,
∴∠EAG=∠EGA.
∵四邊形ABCD是平行四邊形,
∴AB∥CD,AD∥BC.
∴∠ABG=∠BGC.
∴∠CAD=∠BGC.
∴∠AGC=∠GAC.
∴CA=CG.
∵AD∥BC,
∴∠CAD=∠ACB.
∴∠ACB=∠BGC.
∵四邊形ABCD是矩形,
∴∠BCG=90°.
∴∠BCG=∠ABC,
∴△BCG∽△ABC.
∴ .
∴AC2=BCBG.
【解析】(1)因為四邊形ABCD是平行四邊形,所以只要證明∠BAD=90°,即可得到四邊形ABCD是矩形;(2)連接AG,由平行四邊形的性質和矩形的性質以及結合已知條件可證明△BCG∽△ABC,再由相似三角形的性質:對應邊的比值相等即可證明AC2=BCBG.
【考點精析】通過靈活運用平行四邊形的性質和相似三角形的判定與性質,掌握平行四邊形的對邊相等且平行;平行四邊形的對角相等,鄰角互補;平行四邊形的對角線互相平分;相似三角形的一切對應線段(對應高、對應中線、對應角平分線、外接圓半徑、內切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,等邊△ABC中,D為AC中點,∠EDF=120°,DF交AB于F點,且AF=nBF(n為常數(shù),且n>1).
(1)求證:DF=DE;
(2)如圖1,求證:AF﹣CE=AB;
(3)如圖2,當n= 時,過D作DM⊥BC于M點,C為EM的中點.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】為了解某市市民晚飯后1小時內的生活方式,調查小組設計了“閱讀”、“鍛煉”、“看電視”和“其它”四個選項,用隨機抽樣的方法調查了該市部分市民,并根據(jù)調查結果繪制成如下統(tǒng)計圖.
根據(jù)統(tǒng)計圖所提供的信息,解答下列問題:
(1)本次共調查了名市民;
(2)補全條形統(tǒng)計圖;
(3)該市共有480萬市民,估計該市市民晚飯后1小時內鍛煉的人數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某科技有限公司準備購進A和B兩種機器人來搬運化工材料,已知購進A種機器人2個和B種機器人3個共需16萬元;購進A種機器人3個和B種機器人2個共需14萬元.請解答下列問題:
(1)求A , B兩種機器人每個的進價;
(2)已知該公司購買B種機器人的個數(shù)比購買A種機器人的個數(shù)的2倍多4個,如果需要購買A、B兩種種機器人的總個數(shù)不少于28個,且該公司購買的A、B兩種種機器人的總費用不超過106萬元,那么該公司有哪幾種購買方案?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師用手機軟件記錄了某個月(30天)每天走路的步數(shù)(單位:萬步),她將記錄的結果繪制成了如圖所示的統(tǒng)計圖,在李老師每天走路的步數(shù)這組數(shù)據(jù)中,眾數(shù)與中位數(shù)分別為( )
A.1.2與1.3
B.1.4與1.35
C.1.4與1.3
D.1.3與1.3
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲乙兩家綠化養(yǎng)護公司各自推出了校園綠化養(yǎng)護服務的收費方案.
甲公司方案:每月的養(yǎng)護費用y(元)與綠化面積x(平方米)是一次函數(shù)關系,如圖所示.
乙公司方案:綠化面積不超過1000平方米時,每月收取費用5500元;綠化面積超過1000平方米時,每月在收取5500元的基礎上,超過部分每平方米收取4元.
(1)求如圖所示的y與x的函數(shù)解析式;(不要求寫取值范圍)
(2)如果某學校目前的綠化面積是1200平方米.試通過計算說明:選擇哪家公司的服務,每月的綠化養(yǎng)護費用較少.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知,BC∥OA,∠B=∠A=100°,試回答下列問題:
(1)如圖①,求證:OB∥AC.
(2)如圖②,若點E、F在線段BC上,且滿足∠FOC=∠AOC,并且OE平分∠BOF.求∠EOC的度數(shù).
(3)在(2)的條件下,若平行移動AC,如圖③,那么∠OCB:∠OFB的值是否隨之發(fā)生變化?若變化,試說明理由;若不變,求出這個比值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,是拋物線y=ax2+bx+c(a≠0)圖象的一部分,已知拋物線的對稱軸為x=2,與x軸的一個交點是(﹣1,0).下列結論:
①ac<0;
②4a﹣2b+c>0;
③拋物線與x軸的另一個交點是(4,0);
④點(﹣3,y1),(6,y2)都在拋物線上,則有y1<y2 . 其中正確的個數(shù)為( )
A.1
B.2
C.3
D.4
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com